Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    1,464
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. 4 min read NASA’s Swift Studies Gas-Churning Monster ****** Holes A pair of monster ****** holes swirl in a cloud of gas in this artist’s concept of AT 2021hdr, a recurring outburst studied by NASA’s Neil Gehrels Swift Observatory and the Zwicky Transient Facility at Palomar Observatory in California. NASA/Aurore Simonnet (Sonoma State University) Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster ****** holes disrupting a cloud of gas in the center of a galaxy. “It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive ****** Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the ****** holes. As they orbit each other, the ****** holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.” A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics. The dual ****** holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun’s mass. Scientists estimate the ****** holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years. AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF. “Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations,” said co-author Alejandra Muñoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. “Each subsequent event has helped us refine our model of what’s going on in the system.” Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days. Hernández-García and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range. The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data. Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event — the destruction of a star that wandered too close to one of the ****** holes — could be the cause. Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was ******* than the binary itself. When the cloud encountered the ****** holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the ****** holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Watch as a gas cloud encounters two supermassive ****** holes in this simulation. The complex interplay of gravitational and frictional forces causes the cloud to condense and heat. Some of the gas is ejected from the system with each orbit of the ****** holes. F. Goicovic et al. 2016 Hernández-García and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They’re also interested in studying its home galaxy, which is currently merging with another one nearby — an event first reported in their paper. “As Swift approaches its 20th anniversary, it’s incredible to see all the new science it’s still helping the community accomplish,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s still so much it has left to teach us about our ever-changing cosmos.” NASA’s missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works. Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the ******* Kingdom, Brera Observatory in Italy, and the Italian Space Agency. Download high-resolution images and videos. By Jeanette Kazmierczak NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 *****@*****.tld NASA’s Goddard Space Flight Center, Greenbelt, Md. Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share Details Last Updated Nov 13, 2024 Editor Jeanette Kazmierczak Related Terms Astrophysics ****** Holes Galaxies, Stars, & ****** Holes Galaxies, Stars, & ****** Holes Research Goddard Space Flight Center Neil Gehrels Swift Observatory Science & Research Supermassive ****** Holes The Universe View the full article
  2. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA engineers conduct a test of the liquid oxygen/liquid methane Morpheus lander engine HD4B on the E-3 Test Stand at NASA’s Stennis Space Center during the week of Sept. 9, 2013. The fourth-generation Project Morpheus engine was a prototype vertical takeoff and landing vehicle designed to advance innovative technologies into flight-proven systems that may be incorporated into future human exploration missions. NASA/Stennis The work of NASA has fueled commercial spaceflight for takeoff – and for many aerospace companies, the road to launch begins at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Already the nation’s largest propulsion test site and a leader in working with aerospace companies to support their testing needs, NASA Stennis aims to continue growing its commercial market even further. “The aerospace industry is expanding rapidly, and we are here to support it,” said NASA Stennis Director John Bailey. “NASA Stennis has proven for more than two decades that we have the versatile infrastructure and reliable propulsion test experts to meet testing needs and accelerate space goals for a whole range of customers.” The central hub for meeting those needs at the south Mississippi center is the E Test Complex. It features four stands with 12 test cells capable of supporting a range of component and engine test activities. NASA operates the E-1 Test Stand with four cell positions and the E-3 Test Stand with two cells. Relativity Space, based in Long Beach, California, leases the E-2 and E-4 stands to support some of its test operations. Operators conduct a hot ***** for Relativity Space’s Aeon R thrust chamber assembly on the E-1 Test Stand at NASA’s Stennis Space Center in 2024. NASA/Stennis ******* Orbit, a satellite-launch company, conducts a Thrust Chamber Assembly test on the E-1 Test Stand at NASA’s Stennis Space Center in 2021. The company partnered with NASA Stennis to conduct hot ***** tests totaling a cumulative 974.391 seconds.NASA/Stennis Launcher’s 3D-printed Engine-2 rocket engine completes a 5-second hot ***** of its thrust chamber assembly on Aug. 20, 2021, at NASA’s Stennis Space Center. The company was just one of several conducting test projects on site in 2021. Launcher, ******* Orbit, Relativity Space, and L3Harris (formerly known as Aerojet Rocketdyne) made significant strides toward their space-project goals while utilizing NASA Stennis infrastructure.Launcher/John Kraus Photography An image from November 2021 shows a subscale center body diffuser hot ***** on the E-3 Test Stand during an ongoing advanced diffuser test series at NASA’s Stennis Space Center. NASA/Stennis A team of engineers from NASA, Orbital Sciences Corporation and L3Harris (formerly known as Aerojet Rocketdyne) conduct an engine acceptance test on the E-1 Test Stand at NASA’s Stennis Space Center on Jan. 18, 2013. The successful test of AJ26 Engine E12 continued support of Orbital Sciences Corporation as the company prepared to provide commercial cargo missions to the International Space Station. NASA/Stennis Developed during the 1990s and early 2000s, the E Test Complex can deliver various propellants and gases at high and low pressures and flow rates not available elsewhere. The versatility of the complex infrastructure and test team allows it to support projects for commercial aerospace companies, large and small. NASA Stennis also provides welding, machining, calibration, precision cleaning, and other support services required to conduct testing. “NASA Stennis delivers exceptional results in a timely manner with our capabilities and services,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “Our commercial partnerships and agreements have proven to be true win-win arrangements. NASA Stennis is where customers have access to unique NASA test support infrastructure and expertise, making it the go-to place for commercial propulsion testing.” Companies come to the south Mississippi site with various needs. Some test for a short time and collect essential data. Others stay for an extended *******. The stage of development and the particular test article, whether a component or full engine, determine where testing takes place within the E Complex. NASA Stennis also offers a variety of test agreements. Companies may lease a stand or area and perform its own test campaign. They also may team with NASA Stennis engineers and operators to form a blended test team. And in some cases, companies will turn over the entirety of test work to the NASA Stennis team. Current companies conducting work at NASA Stennis include: Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. They join a growing list who conducted earlier test projects in the complex, including SpaceX, Stratolaunch, ******* Orbit, and Orbital Sciences Corporation. In addition, three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite. “We may work with a customer brand new to the field, so we help them figure out how to build their engine,” said Chris Barnett-Woods, E-1 electrical lead and instrumentation engineer. “Another customer may know exactly what they want, and we support them to make it happen. We focus on customer need. Given our expertise, we know how testing needs to be conducted or can figure it out quickly together, which can help our customer save money toward a successful outcome.” NASA engineers conduct a test of a methane-fueled 2K thruster on the E-3 Test Stand at NASA’s Stennis Space Center during a four-day span in May 2015. NASA/Stennis NASA records a historic week Nov. 5-9, 2012, conducting 27 tests on three different rocket engines/components across three stands in the E Test Complex at NASA’s Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 image is from an October 2012 test and is provided courtesy of Blue Origin. Other images are from tests conducted the week of Nov. 5, 2012. NASA/Stennis Operators at the E-2 Test Stand at NASA’s Stennis Space Center conduct a test of the oxygen preburner component developed by SpaceX for its Raptor rocket engine on June 9, 2015. NASA/Stennis Operators conduct a hot ***** on the E-3 Test Stand during ongoing advanced diffuser test series in October 2015 at NASA’s Stennis Space Center. Subscale testing was conducted at NASA Stennis to validate innovative new diffuser designs to help test rocket engines at simulated high altitudes, helping to ensure the engines will ***** and operate on deep space missions as needed. NASA/Stennis NASA’s Stennis Space Center and L3Harris (formerly known as Aerojet Rocketdyne) complete a successful round of AR1 preburner tests on Cell 2 of the E-1 Test Stand during the last week of June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine being designed to end use of Russian engines for national security space launches. NASA/Stennis Capabilities to benefit NASA and the aerospace industry have grown since the center entered its first commercial partnership in the late 1990s. The test team also has grown in understanding the commercial approach, and the center has committed itself to adapting and streamlining its business processes. “Time-to-market is key for commercial companies,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “They want to test as efficiently and economically as possible. Our goal is to meet them where they are and deliver what they need. And that is exactly what we focus our efforts on.” As stated in the site’s latest strategic plan, the goal is to operate as “a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.” To that end, the site is innovating its operations, modernizing its services, and demonstrating it is the best choice for propulsion testing. “NASA Stennis is open for business as the preferred propulsion provider for aerospace companies,” Bailey said. “Companies across the board are realizing they can achieve their desired results at NASA Stennis.” For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions Article 6 mins ago 4 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise Article 6 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams Article 6 mins ago Keep Exploring Discover Related Stennis Topics Propulsion Test Engineering NASA Stennis Front Door Multi-User Test Complex Doing Business with NASA Stennis View the full article
  3. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.  NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of ******, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.  “We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”  NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.   The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.   NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.   Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.  “Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.” NASA’s Stennis Space Center conducts a successful hot ***** of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot ***** of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems. NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.   Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.   The exploration upper stage Green Run test series will culminate with a hot ***** of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.  “All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”   For information about NASA’s Stennis Space Center, visit:  Stennis Space Center – NASA  Share Details Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis – An Ideal Place for Commercial Companies Article 5 mins ago 4 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise Article 6 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams Article 6 mins ago Keep Exploring Discover Related Stennis Topics Propulsion Test Engineering NASA Stennis Front Door Multi-User Test Complex Doing Business with NASA Stennis View the full article
  4. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Contrary to the popular saying, work conducted by the propulsion test team at NASA’s Stennis Space Center is rocket science – and requires all the talent, knowledge, and expertise the term implies. Rocket science at NASA Stennis, located near Bay St. Louis, Mississippi, has helped safely power ********* space dreams for almost 60 years ago. The accumulated knowledge and skills of the site’s test team continue to benefit NASA and commercial aerospace companies, thanks to new generations of skilled engineers and operators. “The innovative, can-do attitude started with the founding of the south Mississippi site more than six decades ago,” said NASA Stennis Director John Bailey. “The knowledge, skills, and insight of a versatile team continue supporting NASA’s mission and goals of commercial aerospace companies by routinely conducting successful propulsion testing at NASA Stennis.” Test team personnel perform facility data review following completion of a liquid oxygen cold-flow activation activity on the E-1 Test Stand at NASA’s Stennis Space Center on March 23, 2016. Activation of the test cell was in preparation for testing L3Harris’ (then known as Aerojet Rocketdyne) AR1 rocket engine pre-burner and main injector. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial projects. NASA/Stennis Operators at NASA’s High Pressure Gas Facility conduct a critical stress test Oct. 18-19, 2018, to demonstrate the facility’s readiness to support testing of the core stage of NASA’s powerful SLS (Space Launch System) rocket. The High Pressure Gas Facility was critical in producing and delivering gases needed for SLS core stage testing ahead of the successful launch of Artemis I. NASA/Stennis Test control center crews at NASA’s Stennis Space Center’s simulate full operations of core stage testing Dec. 13, 2019, for NASA’s powerful SLS (Space Launch System) rocket on the Thad Cochran Test Stand (B-2). NASA Stennis conducted SLS core stage testing in 2020-21 ahead of the successful Artemis I mission. NASA/Stennis A sitewide stress test at NASA’s Stennis Space Center on Dec. 13, 2019, simulates full operations needed during SLS (Space Launch System) core stage testing. The 24-hour exercise involved crews across NASA Stennis, including at the High Pressure Water Facility that provided needed generator power and water flow to the Thad Cochran Test Stand (B-2) during testing.NASA/Stennis The NASA Stennis team exhibits a depth and breadth of experience and expertise likely unsurpassed anywhere in the world. The depth is built on decades of propulsion test experience. Veteran team members of today learned from those working during the Apollo era, who overcame various engineering, technical, communications, and mechanical difficulties in testing the Saturn V rocket stages that powered humans to the Moon. During 43 stage firings, the team accumulated an estimated 2,475 years of rocket engine test expertise. Members of the Apollo test team then joined with new engineers and operators to test main engines that powered 30 years of space shuttle missions. From 1975 to 2009, the team supported main engine development, certification, acceptance, and anomaly testing with over 2,300 hot fires and more than 820,000 seconds of accumulated hot-***** time. “NASA Stennis is unique because of the proven test operations expertise passed from generation to generation,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “It is expertise you can trust to deliver what is needed.” A member of the Fred Haise Test Stand (formerly the A-1 Test Stand) operations team examines the progress of a cold-shock test on May 1, 2014. The test marked a milestone in preparing the stand to test RS-25 rocket engines that will help power NASA’s SLS (Space Launch System) rocket.NASA/Stennis In addition to depth, the site team also has a breadth of experience that gives it unparalleled versatility and adaptability. Part of that comes from the nature of the center itself. NASA Stennis is the second largest NASA center in terms of geography, but the civil ******** workforce is small. As a result, test team members work on a range of propulsion projects, from testing components on smaller E Test Complex cells to ******* large engines and even rocket stages on the heritage Apollo-era stands. “Our management have put us in a position to be successful,” said NASA engineer Josh Greiner. “They have helped move us onto the test stands and given us a huge share of the responsibility of leading projects early in our career, which provides us the confidence and opportunity to conduct tests.” In addition, center leaders made a deliberate decision more than a decade ago to return test stand operations to the NASA team. Prior to that time, stand operations were in the hands of contractors under NASA supervision. The shift allowed the civil ******** test team to fine-tune its skill set even as it continued to work closely with contractor partners to support both government and commercial aerospace propulsion projects. An image from October 2022 shows NASA engineers preparing for the next RS-25 engine test series at NASA’s Stennis Space Center by monitoring the reload of propellant tanks to the Fred Haise Test Stand (formerly the A-1 Test Stand). RS-25 engines are powered by a mix of liquid hydrogen and liquid oxygen.NASA/Stennis An image from October 2022 shows test team personnel ensuring pressures and flow paths are set properly for liquid oxygen to be transferred to the Fred Haise Test Stand (formerly the A-1 Test Stand), pictured in the background.NASA/Stennis An image from August 2023 shows test team personnel inspecting a pump during an initial chill down activity at the E-3 Test Complex. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial programs and projects. NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing that will take place on the B-2 side of the Thad Cochran Test Stand. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. It will fly on the Artemis missions following a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot ***** of the four RL10 engines that will power the upper stage.NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing by conducting a liquid hydrogen flow procedure. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. The upper stage will undergo a series of Green Run tests of its integrated systems on the B-2 side of the Thad Cochran Test Stand at NASA Stennis.NASA/Stennis The evolution and performance of the NASA Stennis team was illustrated in stark fashion in June/July 2018 when a blended team of NASA, Defense Advanced Research Projects Agency, Aerojet Rocketdyne, Boeing, and Syncom Space Services engineers and operators test fired an AR-22 rocket engine 10 times in a 240-hour *******. The campaign marked the first time a large liquid oxygen/liquid hydrogen engine had been tested so often in such a short ******* of time. The test team overcame a variety of challenges, including a pair of lightning strikes that threatened to derail the entire effort. Following completion of the historic series, a NASA engineer who helped lead the campaign recounted one industry observer who repeatedly characterized the site’s test team as nothing less than a national asset. The experienced site workforce now tests RS-25 engines and propulsion systems for NASA’s Artemis campaign, including those that will help power Artemis missions to the Moon for scientific discovery and economic benefits. The NASA Stennis team also supports a range of commercial aerospace propulsion test activities, facilitating continued growth in capabilities. For instance, the team now has experience working with oxygen, hydrogen, methane, and kerosene propellants. “The NASA and contractor workforce at NASA Stennis is second to none when it comes to propulsion testing,” Schuyler said. “Many of the current employees have been involved in rocket engine testing for over 30 years, and newer workers are being trained under these seasoned professionals.” For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis – An Ideal Place for Commercial Companies Article 5 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions Article 6 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams Article 6 mins ago Keep Exploring Discover Related Stennis Topics Propulsion Test Engineering NASA Stennis Front Door Multi-User Test Complex Doing Business with NASA Stennis View the full article
  5. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Workers making way for NASA’s Stennis Space Center near Bay St. Louis, Mississippi, likely did not realize they were building something that would not only withstand the test of time but transcend it. Mosquitoes, snakes, hurricanes, and intense south Mississippi heat – early crews faced all with a spirit of resilience and adaptability that ******** a hallmark characteristic of NASA Stennis six decades later. “From going to the Moon for the first time and now returning to the Moon, you can trace a straight line of propulsion testing at NASA Stennis,” said Maury Vander, chief of the NASA Stennis Test Operations Division. “We still stand on the front lines of support for this country’s space program.” For five decades and counting, the versatile NASA Stennis test stands have been used for stage, engine, and component testing on multiple NASA and commercial projects. A Sept. 25, 2012, aerial image shows the three propulsion test areas at NASA’s Stennis Space Center – the E Test Complex (with 12 active test cell positions capable of component, engine, and stage test activities) in the foreground, the A Test Complex (featuring the Fred Haise, A-2, and A-3 stands for large engine testing) in the middle, and the Thad Cochran Test Stand (B-1/B-2) that can support both engine and stage testing in the background.NASA/Stennis The Fred Haise Test Stand (formerly the A-1 Test Stand), pictured on Oct. 6, 2020, at NASA’s Stennis Space Center, tests RS-25 flight engines to help power NASA’s powerful SLS (Space Launch System). NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-2 Test Stand at NASA’s Stennis Space Center – then-Mississippi Test Facility – on April 17, 1966. Less than a week later, south Mississippi would be fully ushered into the Apollo era with the site’s first-ever hot ***** test. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the A-3 Test Stand at NASA’s Stennis Space Center on March 29, 2013. The test stand area now is under lease to Rocket Lab for commercial operations. NOTE: Right click on photo to open full image in new tab.NASA/Stennis An image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Dec. 31, 2014, during buildout for testing the core stage of NASA’s SLS (Space Launch System) rocket. NASA/Stennis An aerial image shows the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center on Feb. 22, 2017, following core stage buildout of the test stand for future SLS (Space Launch System) testing. NASA/Stennis Three NASA Stennis stands – Fred Haise (formerly the A-1 Test Stand), A-2, and Thad Cochran (B-1/B-2) – date to the 1960s, when they were built to test Saturn V rocket stages for Apollo missions to the Moon. The Fred Haise and A-2 stand were single-position stands for testing one Saturn V second stage at a time. The Thad Cochran featured two positions – (B-1 and B-2) – that could each house a Saturn V first stage, although only the B-2 position was used during Apollo testing. When the Apollo Program ended, the Fred Haise, A-2, and Thad Cochran (B-1) stands were modified to test single engines rather than rocket stages. All three were used in subsequent years to test space shuttle main engines and others. Meanwhile, the Thad Cochran (B-2) stand was maintained for full stage testing. The space shuttle Main Propulsion Test Article was tested on the stand, as was the Common Core Booster for the Delta IV rocket. Most recently, the stand was used to test the first SLS (Space Launch System) stage that helped launch the Artemis I mission in 2022. In 2024, the Fred Haise Test Stand is dedicated to RS-25 engine testing for NASA’s Artemis initiative. Every RS-25 engine that will help launch an SLS rocket during Artemis will be tested on the stand. The A-2 stand has been leased to Relativity Space, which is modifying it to support stage testing for its new rocket. In 2023, the Thad Cochran (B-1) stand concluded more than 20 years of RS-68 testing for Aerojet Rocketdyne (now known as L3Harris) and now is open for commercial use. The Thad Cochran (B-2) stand is being prepared to test NASA’s new SLS exploration upper stage before it flies on a future Artemis mission. “When you think about the work at NASA Stennis, this is a place that helps write history,” Vander said. “And in a sense, these test stands are timeless, still operating as designed 60 years after they were built, so there is more history yet to come.” NASA Stennis also constructed a fourth large test structure in the 2010s. The A-3 Test Stand is uniquely designed to simulate high altitudes up to 100,000 feet for testing engines and stages that need to ***** in space. Rocket Lab currently leases the A-3 Test Stand area for construction of its Archimedes Test Complex. Crews deliver the first RS-25 flight engine, engine No. 2059, to the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Nov. 4, 2015. The engine was tested to certify it for use on NASA’s powerful SLS (Space Launch System) rocket. NASA/Stennis An image shows a space shuttle main engine test on the A-2 Test Stand at NASA’s Stennis Space Center on July 21, 2003. NASA/Stennis The A-3 Test Stand, designed to test ***** next-generation engines at simulated altitudes up to 100,000 feet, undergoes an activation test on Feb. 24, 2014.NASA/Stennis NASA Stennis also operates a smaller test area to conduct component, subsystem, and system level testing. The area is now known as the E Test Complex and features four facilities, all developed from the late 1980s to the early 1990s. Construction of the E-1 Test Stand, then known as the Component Test Facility, began to support a ****** project involving NASA and the U.S. Air Force project. Although the project was canceled, a second ****** endeavor allowed completion of the test facility. Development of the E-2 Test Stand, originally known as the High Heat Flux Facility, began to support the National Aerospace Plane project. Following cancelation of the project, the facility was completed to support testing for component and engine development efforts. An E-3 Test Facility was constructed to support various component and small/subscale engine and booster test projects. Relativity Space leased a partially developed E-4 test area in 2018 and has since completed construction to support its commercial testing. All in all, the E Test Complex stands feature 12 active cells capable of various component and engine testing. The versatility of the complex infrastructure and test team allows it to support test projects for a range of commercial aerospace companies, large and small. Currently, both E-2 cells 1 and 2 are leased to Relativity Space through 2028. An aerial image shows the E-1 Test Stand at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-3 test area at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis An aerial image shows the E-2 Test Stand (Cell 1) at NASA’s Stennis Space Center on May 19, 2015. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities. NASA/Stennis “These facilities really do not exist anywhere else in the ******* States,” said Kevin Power, assistant director, Office of Project Management in the NASA Stennis Engineering and Test Directorate. “Customers come to us with requirements for certain tests of an article, and we look at what is the best place to test it based on the facility infrastructure. We have completed component level testing, all the way up to full engines.” The list of companies who have conducted – or are now conducting – propulsion projects in the E Test Complex reads like a who’s who of commercial aerospace leaders. “The E Complex illustrates the NASA Stennis story,” Power said. “We have very valuable infrastructure and resources, chief of which is the test team, who adapt to benefit NASA and meet the needs of the growing commercial aerospace industry.” For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis – An Ideal Place for Commercial Companies Article 5 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions Article 6 mins ago 4 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise Article 6 mins ago Keep Exploring Discover Related Stennis Topics Propulsion Test Engineering NASA Stennis Front Door Multi-User Test Complex Doing Business with NASA Stennis View the full article
  6. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An aerial image from 1965 shows the dual flame trenches of the Thad Cochran Test Stand (B-1/B-2) under construction at NASA’s Stennis Space Center (then known as Mississippi Test Operations) taking shape.NASA/Stennis Since the ******* States sent the first humans to the Moon more than 60 years ago, NASA’s Stennis Space Center near Bay St. Louis, Mississippi, has answered the call to help power the nation’s space dreams. “History shows NASA Stennis is the country’s premier rocket engine test site and the go-to place for propulsion testing,” NASA Stennis Director John Bailey said. “It started with Apollo and continued through space shuttle. Now, we are going back to the Moon and beyond with Artemis – and it all comes through NASA Stennis.” As the nation raced to send the first humans to the Moon, NASA selected a remote location in Hancock County, Mississippi, in October 1961 to test the needed rocket stages. Thanks to a massive construction project, the site conducted its first Saturn V rocket stage test in April 1966. In the next four-plus years, NASA Stennis tested 27 Saturn V stages, including those that launched 12 astronauts to walk on the Moon. “Talking to people working here during those years, you hear how much they believed in the mission,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “Their hard work helped America reach the Moon and showed us the possibilities for NASA Stennis.” Construction workers bring down a tree during the early days of construction for NASA’s Stennis Space Center. Tree-cutting to start what was the largest construction project in Mississippi – and one of the largest in the ******* States – at the time began May 17, 1963.NASA/Stennis NASA Stennis (then known as the Mississippi Test Facility) conducts its first-ever test ******* – a 15-second hot ***** of the Saturn V S-II-C second stage prototype – on the A-2 Test Stand on April 23, 1966.NASA/Stennis An aerial image from early 1967 shows the completed A-2 Test Stand in the foreground and the Thad Cochran Test Stand (B-1/B-2) in the background at NASA’s Stennis Space Center, then known as the Mississippi Test Facility.NASA/Stennis NASA officials view the first space shuttle main engine test on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center (then known as National Space Technology Laboratories) on May 19, 1975.NASA/Stennis A 1979 image offers a close-up view of a space shuttle main propulsion test article hot ***** on the B-2 side of the Thad Cochran Test Stand at NASA’s Stennis Space Center (then known as National Space Technology Laboratories). Main propulsion test article testing involved installing a shuttle fuel tank, a mockup of the shuttle orbiter and the vehicle’s three-engine configuration on the stand, then ******* all three engines simultaneously, as would be done during an actual launch.NASA/Stennis As Apollo missions neared an end, plans were underway to drastically reduce the NASA Stennis footprint. Enter the space shuttle. NASA considered three locations to test engines for its new reusable vehicle before selecting NASA Stennis on March 1, 1970, ensuring the center’s future for the next several decades. Space shuttle main engine testing proved challenging as the site transitioned from handling full rocket stages to ******* single engines. “A big part of the challenge was the fact that teams were testing an entire engine from the very start,” NASA Test Operations Chief Maury Vander said. “Typically, you begin testing components, then progress to a full engine. Teams had a lot to learn in real time.” NASA Stennis teams also tested the shuttle Main Propulsion Test Article with three engines ******* simultaneously. The testing was particularly critical given the first shuttle mission would carry astronauts. NASA Stennis teams worked diligently to demonstrate the shuttle system would operate safely, an effort characterized as one of the site’s finest hours. Following the first shuttle mission in 1981, astronauts Robert Crippen and John Young visited the south Mississippi site. “The effort that you contributed made it possible for us to sit back and ride,” Crippen told NASA Stennis employees. From 1975 to 2009, NASA Stennis tested every main engine to help power 135 shuttle missions that enabled historic missions, such as those that deployed and repaired the Hubble Space Telescope and assembled the International Space Station, enabling its many scientific experiments and spinoff technologies. The site also tested every engine and component upgrade and helped troubleshoot performance issues. It led test campaigns following shuttle accidents to help ensure safe returns to flight. In total, the site conducted 2,307 tests for 820,475.68 seconds of accumulated hot *****. NASA conducts the final test of a space shuttle main engine on the A-2 Test Stand at NASA’s Stennis Space Center on July 29, 2009. The Space Shuttle Program concluded two years later with the STS-135 shuttle mission. NASA / Stennis An on-stand camera offers a closeup view of the first test of an RS-25 engine on the Fred Haise Test Stand (formerly the A-1 Test Stand) at NASA’s Stennis Space Center on Jan. 9, 2015. RS-25 engines power the core stage of NASA’s powerful SLS (Space Launch System) rocket.NASA/Stennis Crews at NASA’s Stennis Space Center install the first core stage of NASA’s powerful SLS (Space Launch System) on the B-2 side of the Thad Cochran Test Stand on Jan. 21-22, 2020. Following testing, the stage would help launch the Artemis I mission in November 2022.NASA/Stennis NASA conducts a full-duration RS-25 hot ***** April 3, 2024, on the Fred Haise Test Stand at NASA’s Stennis Space Center, achieving a major milestone for future Artemis flights of NASA’s SLS (Space Launch System) rocket. It marked the final hot ***** of a 12-test series to certify production of new RS-25 engines by lead contractor L3Harris (formerly known as Aerojet Rocketdyne) to help power NASA’s SLS rocket on Artemis missions to the Moon and beyond, beginning with Artemis V.NASA/Stennis Even as NASA Stennis tested main engines to power shuttle missions, the site led in testing next-generation engines, including the Fastrac, XRS-2200 linear aerospike, and J-2X. It also developed its E Test Complex, with multiple test stands and cells, to support a range of component and engine test projects, including those of commercial aerospace companies. A landmark agreement between NASA Stennis and Aerojet Rocketdyne (now known as L3Harris) in 1998 marked the site’s first test partnership with such a company. “That was the starting point,” said Vander. “Today, we are a preferred partner for multiple companies and test projects, large and small.” NASA Stennis also is testing RS-25 engines and related systems to help power NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon. When the agency travels to Mars, it is expected the missions will launch with engines tested at the Mississippi site as well. “The Gulf Coast of Mississippi helped achieve our space dreams of the past, and NASA Stennis continues supporting today’s dreams,” Bailey said. “It is a true testament to the expertise and dedication of our entire team and the incredible support of surrounding communities and the whole state.” For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 4 min read NASA Stennis – An Ideal Place for Commercial Companies Article 5 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions Article 6 mins ago 4 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise Article 6 mins ago Keep Exploring Discover Related Stennis Topics Propulsion Test Engineering NASA Stennis Front Door Multi-User Test Complex Doing Business with NASA Stennis View the full article
  7. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4362-4363: Plates and Polygons NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI) on Nov. 11, 2024 – sol 4360, or Martian day 4,360 of the Mars Science Laboratory Mission – at 00:06:13 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 11, 2024 After a successful 23-meter (about 75 feet) drive today in pre-planning we found ourselves in front of some rocks with a curious dark, platy topping. This is similar to material we have seen previously including over the weekend where MAHLI imaged “Buttress Tree.” This beautiful hand-lens image is shown above, where you can see this more resistant platy texture at the top of the layered rock. Unfortunately it was deemed too unsafe to move the arm today, so no contact science observations were made on this dark material, but a plethora of remote science made up for it! A curious curved fracture along a rock in the workspace became the target of our ChemCam LIBS laser shots called “Pioneer Basin.” ChemCam will then take a long-distance RMI looking back at Gediz Vallis channel, which we have been driving away from. Mastcam is focusing on taking two mosaics of areas of rocks that exhibit light- and dark-toned bands from orbit. We previously drove across these bands in January before we crossed the Gediz Vallis channel. Now that we are over the channel, we are about to drive on the dark, banded material once again. Mastcam is also imaging some interesting polygonal textures we see in a few rocks around the rover. To keep it simple, the science team named all four targets of polygonal rocks “Acrodectes Peak.” As Curiosity drives further away from the Gediz Vallis channel, the exploration of the sulfate unit continues. Although the driving is tough at times, the beautiful discoveries and amazing geology make the tough times worth it. Let’s hope we can get some contact science activities safe and sound in the next plan. Written by Emma Harris, Graduate Student at Natural History Museum, London Share Details Last Updated Nov 13, 2024 Related Terms Blogs Explore More 3 min read Peculiar Pale Pebbles During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered… Article 14 hours ago 2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover! Article 1 day ago 4 min read Sols 4357–4358: Turning West Article 4 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  8. Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ 24 Min Read The Next Full Moon Will Be the Last of Four Consecutive Supermoons Guardians of Traffic statue in Cleveland, Ohio, in front of the supermoon that was visible on Sept. 17, 2024. On this day, the full moon was a partial lunar eclipse; a supermoon; and a harvest moon. Credits: NASA/GRC/Sara Lowthian-Hanna The Next Full Moon is a Supermoon; the *******, Frost, Frosty, or Snow Moon; Kartik Purnima; Loy Krathong; the Bon Om Touk (”Boat Racing Festival”) Moon, the Tazaungdaing Festival Moon; and Ill Poya. The next full Moon will be Friday afternoon, November 15, 2024, at 4:29 PM EST. This will be early Saturday morning from Kamchatka and Fiji Time eastwards to the International Date Line. The Pleiades star cluster will appear near the full Moon. The Moon will appear full for about 3 days around this time, from a few hours before sunrise on Thursday morning to a few hours before sunrise on Sunday morning. This full Moon will be the last of four consecutive supermoons, slightly closer and brighter than the first of the four in mid-August. The Maine Farmers’ Almanac began publishing Native ********* names for full Moons in the 1930s. Over time these names have become widely known and used. According to this almanac, as the full Moon in November this is the ******* Moon, the Frost or Frosty Moon, or the Snow Moon. For the ******* Moon, one interpretation is that mid-Fall was the time to set ******* traps before the swamps freeze to ensure a supply of warm winter furs. Another interpretation suggests that the name ******* Moon came from how active the beavers are in this season as they prepare for winter. The Frost, Frosty, or Snow Moon names come from the frosts and early snows that begin this time of year, particularly in northeastern North America. This is Kartik Purnima (the full Moon of the Hindu lunar month of Kartik) and is celebrated by Hindus, Jains, and Sikhs (each for different reasons). In Thailand and nearby countries this full Moon is Loy Krathong, a festival that includes decorating baskets and floating them on a river. In Cambodia this full Moon corresponds with the 3-day Bon Om Touk (“Boat Racing Festival”), the Cambodian Water Festival featuring dragon boat races. In Myanmar this is the Tazaungdaing Festival, a festival that predates the introduction of Buddhism and includes the launching of hot air balloons (sometimes flaming or laden with fireworks). In Sri Lanka this is Ill (or Il) Poya, commemorating the Buddha’s ordination of sixty disciples as the first Buddhist missionaries. In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the tenth month of the ******** year of the Dragon, Marcheshvan in the Hebrew calendar, a name often shortened to Cheshvan or Heshvan, and Jumādā al-ʾŪlā, the fifth month of the Islamic year. As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Get ready for winter, visit a local river (particularly if there are any festivals or boat races), but please don’t launch flaming hot air balloons filled with fireworks (some online videos make it quite clear why this is a bad idea), especially in areas subject to wildfires! The next month or two should be a great time for Jupiter and Saturn watching. Both will continue to shift westward each night, gradually making them easier to see earlier in the evening sky. Gordon Johnston Retired NASA Program Executive As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, DC): As Autumn continues the daily periods of sunlight continue shortening. On Friday, November 15, (the day of the full Moon), morning twilight will begin at 5:51 AM EST, sunrise will be at 6:51 AM, solar noon will be at 11:53 AM when the Sun will reach its maximum altitude of 32.4 degrees, sunset will be at 4:54 PM, and evening twilight will end at 5:55 PM. Our 24-hour clock is based on the average length of the solar day. The day of the winter solstice is sometimes called the “shortest day of the year” (because it has the shortest ******* of sunlight). But it could also be called the “longest day of the year” because the longest solar day is on or just after the solstice. Because the solar days are longer, the earliest sunset of the year occurs before the solstice and the latest sunrise of the year (ignoring Daylight Savings Time) occurs after the solstice. For the Washington, DC area, the sunsets on Friday and Saturday, December 6 and 7, 2024, are tied for the earliest sunsets. On Friday, morning twilight will begin at 6:10 AM EST, sunrise will be at 7:13 AM, solar noon will be at 11:59 AM when the Sun will reach its maximum altitude of 28.5 degrees, sunset will be at 4:45:50 PM, and evening twilight will end at 5:49 PM. On Saturday, morning twilight will begin at 6:11 AM EST, sunrise will be at 7:14 AM, solar noon will actually be at noon (12:00 PM) when the Sun will reach its maximum altitude of 28.4 degrees, sunset will be at 4:45:50 PM, and evening twilight will end at 5:49 PM. By Sunday, December 15, (the day of the full Moon after next), morning twilight will begin at 6:16 AM EST, sunrise will be at 7:20 AM, solar noon will be at 12:04 PM when the Sun will reach its maximum altitude of 27.8 degrees, sunset will be at 4:47 PM, and evening twilight will end at 5:51 PM. The next month or two should be a great time for Jupiter and Saturn watching, especially with a backyard telescope. Saturn was at its closest and brightest on September 7 and is high in the southern sky as evening twilight ends. Jupiter will be shifting into the evening sky during this lunar cycle. On November 15 Jupiter will be rising about a half hour after evening twilight ends. Jupiter will be at its closest and brightest on December 7, rising around sunset and setting around sunrise. By the full Moon after next on December 15, Jupiter will be 19 degrees above the horizon as evening twilight ends. Both Jupiter and Saturn will continue to shift westward each night, gradually making them easier to see earlier in the evening sky (and friendlier for backyard stargazing, especially if you have young ones with earlier bedtimes). With clear skies and a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. For Saturn, you should be able to see Saturn’s rings and its bright moon Titan. The rings are appearing thinner and will be edge-on to the Earth in March 2025. We won’t get the “classic” view of Saturn showing off its rings until 2026. Comets Of the two comets described in my last Moon Missive, one ******** visible through large binoculars or a telescope during this lunar cycle. The sungrazing Comet C/2024 S1 (ATLAS) disintegrated during its very close pass by the Sun and is no longer visible. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be in the evening sky, fading from visual magnitude 8 to 10.3 as it moves away from the Earth and Sun. In addition, comet 33P/LINEAR should be visible with large binoculars or a telescope in November and December, shining at about magnitude 10 around its perihelion on November 29 and closest approach to Earth on December 9. The next comet that we anticipate might be visible to the unaided eye is C/2024 G3 (ATLAS), which will reach its closest to the Sun and Earth in mid January 2025. It is another sungrazing comet that might put on a good show or might break apart and vanish. Meteor Showers Unfortunately, one of the three major meteor showers of the year, the Geminids (004 GEM), will peak the morning of December 14, with the light of the nearly full Moon interfering. According to the International Meteor Organization, observers south of about 30 degrees north might be able to see these meteors for an hour or so between moonset and the first light of dawn (although the radiant for this meteor shower is at 33 degrees north latitude, so observers too far south of the equator will also have limited visibility). In a good year, this shower can produce 150 visible meteors per hour under ideal conditions, but this will not be a good year. For the Washington, DC area the MeteorActive app predicts that at about 2 AM EST on the morning of December 14, under bright suburban sky conditions, the peak rate from the Geminids and all other background sources might reach 20 meteors per hour. If the weather cooperates by being clear with no clouds or hazes and you do go looking for meteors, try to find a place as far as possible from light sources that has a clear view of a wide expanse of the sky. Give your eyes plenty of time to adapt to the dark. Your ****** vision (cone cells), concentrated in the center of your field of view, will adapt to darkness in about 10 minutes. Your more sensitive night vision rod cells will continue to improve for an hour or more (with most of the improvement in the first 35 to 45 minutes). The more sensitive your eyes are, the more chance you will have of seeing meteors. Since some meteors are faint, you will tend to see more meteors from the “corner of your eye.” Even a short exposure to light (from passing car ***********, etc.) will start the adaptation over again (so no turning on a light or your cell phone to check what time it is). In addition, a number of relatively minor meteor showers will peak during this lunar cycle. The light of the waning Moon will interfere with the Leonids (013 LEO) on November 17, α-Monocerotids (246 AMO) on November 21, and November Orionids (250 NOO) on November 28. The Phoenicids (254 PHO), best seen from the Southern Hemisphere, may peak around December 1. Models predict low rates and faint meteors this year but not much is known about this meteor shower. Most years the rates are low, but as reported by the International Meteor Organization, significant activity was observed in 2014. Once, in 1956, the Phoenicids reached an estimated rate of 100 visible meteors per hour. Another Southern Hemisphere shower is the Puppid-Velids (301 PUP), expected to peak sometime around December 4 at about 10 meteors per hour (under ideal conditions). The Monocerotids (019 MON) and σ-Hydrids (016 HYD) are both expected to peak on December 9 at 3 meteors per hour and 7 meteors per hour, respectively. These rates are low enough that seeing them from our light-polluted urban areas will be unlikely. Evening Sky Highlights On the evening of Friday, November 15 (the evening of the full Moon), as twilight ends (at 5:55 PM EST), the rising Moon will be 14 degrees above the east-northeastern horizon with the Pleiades star cluster 5 degrees to the lower left. The brightest planet in the sky will be Venus at 12 degrees above the southwestern horizon. Next in brightness will be Mercury at less than a degree above the west-southwestern horizon. Saturn will be 38 degrees above the south-southeastern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 39 degrees above the west-southwestern horizon, with its current brightness curve predicting it will have faded to magnitude 8, too faint to see with the unaided eye. The bright star closest to overhead will be Deneb at 79 degrees above the northwestern horizon. Deneb (visual magnitude 1.3) is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. One of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us. As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left and higher in the sky along the southwestern horizon. Mercury, shining brighter than Saturn, will initially shift left along the southwestern horizon until November 19, after which it will shift to the right. On November 22 Jupiter will join the planets Venus, Mercury and Saturn in the sky as twilight ends, shining brighter than Mercury. November 24 will be the last evening Mercury will be above the horizon as evening twilight ends, although it will remain visible in the glow of dusk for a few more evenings as it dims and shifts towards its passage between the Earth and the Sun on December 5. Jupiter will be at its closest and brightest for the year on December 7. The waxing Moon will pass by Venus on December 4, Saturn on December 7, and the Pleiades on December 13. By the evening of Saturday, December 14 (the start of the night of the December 15 full Moon), as twilight ends (at 5:50 PM EST), the rising Moon will be 19 degrees above the east-northeastern horizon with bright planet Jupiter 6 degrees to the right and the bright star Aldebaran father to the right. The brightest planet visible will be Venus at 21 degrees above the southwestern horizon. Next in brightness will be Jupiter. Saturn will be 43 degrees above the southern horizon. The bright star closest to overhead will still be Deneb at 61 degrees above the west-northwestern horizon. Morning Sky Highlights On the morning of Friday, November 15 (the morning of the full Moon after next), as twilight begins (at 5:51 AM EST), the setting full Moon will be 7 degrees above the west-northwestern horizon. The brightest planet in the sky will be Jupiter at 35 degrees above the western horizon. Mars will be at 68 degrees above the southwestern horizon. Comet C/2024 S1 (ATLAS) will not be visible, even with a telescope, as it broke apart into pieces too small to see as it passed its closest to the Sun on October 28. The bright star appearing closest to overhead will be Pollux at 69 degrees above the west-southwestern horizon (higher than Mars by about a half degree). Pollux is the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini. It is an orange tinted star about 34 lightyears from Earth. Pollux is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness. As this lunar cycle progresses, Jupiter, Mars, and the background of stars will appear to shift westward each evening, with Mars passing near the Beehive star cluster in early December. The waning Moon will pass by the Pleiades star cluster on November 16, Jupiter on November 17, Mars and Pollux on November 20, appear on the other side of Mars on November 21, Regulus on November 22 and 23, and Spica on November 27 (passing in front of Spica for parts of the USA and Canada). Jupiter will be at its closest and brightest on December 7, rising around sunset and setting around sunrise. December 12 will be the first morning Mercury will be above the east-southeastern horizon as morning twilight begins, though it will be visible in the glow of dawn for a few days before. By the morning of Sunday, December 15 (the morning of the full Moon after next), as twilight begins (at 6:16 AM EST), the setting full Moon will be 15 degrees above the west-northwestern horizon. The brightest planet in the sky will be Jupiter, appearing below the Moon at 5 degrees above the horizon. Second in brightness will be Mars at 46 degrees above the western horizon, then Mercury at 4 degrees above the east-southeastern horizon. The bright star appearing closest to overhead will be Regulus at 55 degrees above the southwestern horizon, with Arcturus a close second at 52 degrees above the east-southeastern horizon. Regulus is the 21st brightest star in our night sky and the brightest star in the constellation Leo the lion. The Arabic name for Regulus translates as “the heart of the lion.” Although we see Regulus as a single star, it is actually four stars (two pairs of stars orbiting each other). Regulus is about 79 light years from us. Arcturus is the brightest star in the constellation Boötes the herdsman or plowman and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the handle as it “arcs towards Arcturus.” Detailed Daily Guide Here for your reference is a day-by-day listing of celestial events between now and the full Moon on December 15, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app set for your location or a star-watching guide from a local observatory, news outlet, or astronomy club. Thursday morning, November 14, at 6:18 EST, the Moon will be at perigee, its closest to the Earth for this orbit. As mentioned above, the full Moon will be Friday afternoon, November 15, 2024, at 4:29 PM EST. This will be early Saturday morning from Kamchatka and Fiji Time eastwards to the International Date Line. It will be the last of four consecutive supermoons. The Pleiades star cluster will appear near the full Moon. The Moon will appear full for about 3 days around this time, from a few hours before sunrise Thursday morning to a few hours before sunrise Sunday morning. Friday evening into Saturday morning, November 15 to 16, the Pleiades star cluster will appear near the full Moon. This may best be viewed with binoculars, as the brightness of the full Moon may make it hard to see the stars in this star cluster. As evening twilight ends (at 5:55 PM EST), the Pleiades will appear 5 degrees to the lower left of the full Moon. By the time the Moon reaches its highest for the night (Saturday morning at 12:07 AM), the Pleiades will be 2 degrees to the upper left. The Moon will pass in front of the Pleiades in the early morning hours. By the time morning twilight begins (at 5:52 AM) the Pleiades will be a degree to the lower right of the Moon. Saturday, November 16, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from the Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Mercury and the line of the horizon changes with the seasons, the date when Mercury and the Sun are farthest apart as seen from the Earth is not always the same as when Mercury appears highest above the southwestern horizon as evening twilight ends, which will occur three evenings later, on November 19. Saturday night into Sunday morning, November 16 to 17, the planet Uranus will be at its closest and brightest for the year, called “opposition” because on Saturday night it will be opposite the Earth from the Sun. At opposition Uranus can be bright enough to see with the unaided eye (under very clear, dark sky conditions). From our light-polluted urban locations you will need binoculars or a telescope. Also on Saturday night into Sunday morning, November 16 to 17, the planet Jupiter will appear near the full Moon. As Jupiter rises on the east-northeastern horizon (at 6:14 PM EST) it will be 10 degrees to the lower left of the Moon. The Moon will reach its highest for the night about 7 hours later (at 1:09 AM), with Jupiter 7.5 degrees to the lower left. By the time morning twilight begins (at 5:52 AM) Jupiter will be 6 degrees to the left of the Moon. Tuesday night into Wednesday morning, November 19 to 20, the bright star Pollux and the bright planet Mars will appear near the waning gibbous Moon. As the Moon rises on the northeastern horizon (at 8:20 PM EST), Pollux will be 2.5 degrees to the upper left of the Moon. By the time the Moon reaches its highest in the sky (at 4:11 AM) Pollux will be 5 degrees to the upper right of the Moon, with Mars 7.5 degrees to the lower left of the Moon, such that these three appear aligned. By the time morning twilight begins (at 5:55 AM) Mars will be 7 degrees to the upper left and Pollux 5.5 degrees to the lower right. Wednesday night into Thursday morning, November 20 to 21, the waning gibbous Moon will have shifted to the other side of Mars. As the Moon rises on the east-northeastern horizon (at 9:29 PM EST) Mars will be 4 degrees to the upper right of the Moon. By the time the Moon reaches its highest for the night (at 5:03 AM) Mars will be 7 degrees to the right of the Moon. Morning twilight will begin less than an hour later (at 5:56 AM) with Mars 7 degrees to the lower right of the Moon. Friday evening, November 22, will be the first evening the bright planet Jupiter will be above the east-northeastern horizon as evening twilight ends (at 5:51 PM EST). Also on Friday evening, the waning Moon will appear half-full as it reaches its last quarter at 8:28 PM EST (when we can’t see it). Friday night into Saturday morning, November 22 to 23, the bright star Regulus will appear near the waning half-Moon. As Regulus rises on the east-northeastern horizon (at 11:29 PM EST) it will be 9 degrees below the Moon, with Mars farther to the upper right and Pollux beyond Mars. By the time the Moon reaches its highest for the night (at 5:49 AM) Regulus will be 7 degrees to the lower left, and morning twilight will begin 8 minutes later (at 5:57 AM). Saturday night into Sunday morning, November 23 to 24, the waning crescent Moon will have shifted to the other side of Regulus. When the Moon rises on the east-northeastern horizon (at 11:38 PM EST) Regulus will be 4 degrees to the upper right of the Moon. The pair will separate as the night progresses. By the time morning twilight begins (at 5:58 AM) Regulus will be 6.5 degrees to the upper right of the Moon. Sunday evening, November 24, will be the last evening the planet Mercury will be above the west-southwestern horizon as evening twilight ends, although it should remain visible in the glow of dusk before twilight ends for a few more evenings as it dims and shifts towards its passage between the Earth and the Sun on December 5. Tuesday morning, November 26, at 6:57 AM EST, the Moon will be at apogee, its farthest from the Earth for this orbit. On Wednesday morning, November 27, the bright star Spica will appear near the waning crescent Moon. As Spica rises on the east-southeastern horizon (at 3:41 AM EST) it will be a degree below the Moon. As morning progresses the Moon will shift towards Spica, and for much of the Eastern USA and Canada the Moon will block Spica from view. See [Hidden Content] for a map and information on the areas that will be able to see this eclipse. Times will vary by location, but for the Washington, DC area, Spica will vanish behind the illuminated limb of the Moon at 5:34 AM and the Moon will still be blocking Spica from sight as morning twilight begins at 6:02 AM. Early Sunday morning, December 1, at 1:22 AM EST, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of or the day after the New Moon marks the start of the new month for most moon-based calendars. The eleventh month of the ******** year of the Dragon starts on Sunday, December 1. Sundown on Sunday, December 1, marks the start of Kislev in the Hebrew calendar. Hanukkah will begin towards the end of Kislev. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many ******* communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Sunday, December 1, will probably mark the beginning of Jumādā ath-Thāniyah, also known as Jumādā al-ʾĀkhirah. Wednesday evening, December 4, the bright planet Venus will appear 3 degrees to the upper right of the waxing crescent Moon. The Moon will be 15 degrees above the southwestern horizon as evening twilight ends (at 5:49 PM EST). The Moon will set 2 hours later (at 7:46 PM). Thursday evening, December 5, the planet Mercury will be passing between the Earth and the Sun as seen from the Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun as seen from the Earth). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the eastern horizon in less than a week. Saturday afternoon, December 7, the planet Jupiter will be at its closest and brightest for the year, called “opposition” because it will be opposite the Earth from the Sun, effectively a “full” Jupiter. Jupiter will be 12 degrees above the east-northeastern horizon as evening twilight ends (at 5:49 PM EST), will reach its highest in the sky right around midnight (11:59 PM), and will be 11 degrees above the west-northwestern horizon as morning twilight begins (Sunday morning at 6:11 AM). Only planets that orbit farther from the Sun than the Earth can be seen at opposition. Saturday evening, December 7, the planet Saturn will appear to the upper left of the waxing crescent Moon. They will be 6 degrees apart as evening twilight ends (at 5:49 PM EST). Saturn will appear to shift clockwise and closer to the Moon, so that by the time the Moon sets 5.5 hours later (at 11:18 PM) Saturn will be 3.5 degrees above the Moon on the west-southwestern horizon. For a swath in the Pacific Ocean off the coast of Asia the Moon will actually block Saturn from view, see [Hidden Content] for a map and information on the locations that can see this eclipse. Sunday morning, December 8, the Moon will appear half-full as it reaches its first quarter at 10:27 AM EST (when we can’t see it). Thursday morning, December 12, will be the first morning the planet Mercury will be above the east-southeastern horizon as morning twilight begins (at 6:14 AM EST). Thursday morning, December 12, at 8:18 AM EST, the Moon will be at perigee, its closest to the Earth for this orbit. Friday evening into Saturday morning, December 13 to 14, the Pleiades star cluster will appear near the full Moon. This may best be viewed with binoculars, as the brightness of the full Moon may make it hard to see the stars in this star cluster. As evening twilight ends (at 5:50 PM EST), the Pleiades will appear 4 degrees to the upper right of the full Moon. By the time the Moon reaches its highest for the night (at 10:49 PM), the Pleiades will be 6 degrees to the right. By about 2 AM the Pleiades will be 8 degrees to the lower right of the Moon and they will continue to separate as the morning progresses. As mentioned above, one of the three major meteor showers of the year, the Geminids (004 GEM), will peak Saturday morning, December 14. The light of the nearly full Moon will interfere. In a good year, this shower can produce 150 visible meteors per hour under ideal conditions, but this will not be a good year. For the Washington, DC area the MeteorActive app predicts that at about 2 AM EST on the morning of December 14, under bright suburban sky conditions, the peak rate from the Geminids and all other background sources might reach 20 meteors per hour. See the meteor summary above for suggestions for meteor viewing. Saturday morning, December 14, the full Moon, the bright planet Jupiter, and the bright star Aldebaran will form a triangle. As Aldebaran sets on the west-northwestern horizon (at 6:10 AM EST) it will be 9 degrees to the lower left of the Moon with Jupiter 7 degrees to the upper left of the Moon. Morning twilight will begin 6 minutes later. Saturday evening, December 15, the full Moon will have shifted to the other side of Jupiter. Jupiter will be 6 degrees to the right of the Moon as evening twilight ends (at 5:50 PM EST) and the pair will separate as the night progresses. The full Moon after next will be Sunday morning, December 15, 2024, at 4:02 AM EST. This will be Saturday evening from Alaska Time westwards to the International Date Line. The Moon will appear full for about 3 days around this time, from Friday evening through Monday morning, making this a full Moon weekend. Share Details Last Updated Nov 13, 2024 Related Terms Earth’s Moon Skywatching Skywatching Tips Supermoons Keep Exploring Discover More Topics From NASA Moon Phases Moon Viewing Guide Asteroids, Comets & Meteors Planets View the full article
  9. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) María Fernanda Barbarena-Arias (izquierda), profesora asociada de biología e instructora de la pasantía OCEANOS, de pie en la arena de Playa Melones, Isla Culebra, durante la sección de trabajo de campo de la pasantía.NASA ARC/Milan Loiacono Read this interview in English here ¿Cuál es tu nombre y tu rol en OCEANOS? Mi nombre es María Fernanda Barbarena-Arias. Soy una profesora asociada al Departamento de Ciencia Natural, específicamente Biología, en la Universidad Interamericana, en el Recinto Metropolitano. Para OCEANOS, soy una de las investigadoras. ¿Cuál es la importancia de un programa como OCEANOS, particularmente en Puerto Rico? OCEANOS es un programa que en Puerto Rico está haciendo una contribución única porque está exponiendo a estudiantes que no son del sistema UPR. Está dando esas oportunidades a conocer y a saber que las ciencias marinas son una alternativa de carrera. Tradicionalmente, en Puerto Rico las ciencias marinas están concentradas en el sistema público de enseñanza, y OCEANOS está integrando universidad privada y abriendo oportunidades para esos estudiantes que están en otros tipos de universidades que puedan aprender sobre ciencias marinas o carreras en ciencias marinas. ¿Qué crecimiento o cambio ve en los estudiantes a lo largo de la pasantía? Primero, veo que han ganado confianza. La primera vez que, por ejemplo, se ponen a nadar en el agua, están temerosos, asustados, y después, hoy, ya están completamente confiados. La confianza aumenta muchísimo también al verlos hacer sus proyectos de investigación. El primer día hace muchas preguntas y están muy inseguros o sin saber cómo hacer el procedimiento y ya hoy lo hicieron sin hacer pregunta, Sin tener que preguntarle a nadie, alistaron todo. Así que esa confianza en que ellos lo pueden hacer es una de las principales transformaciones que he observado en ellos. ¿Qué es algo que espera que los estudiantes se lleven **** ellos cuando se vayan? Cuando los estudiantes terminan el internado, espero que se lleven **** ellos el ser voces que las ciencias naturales se estudian también para involucrarse en otros tipos de carreras que no estén relacionadas **** salud humana. Tradicionalmente, en Puerto Rico el público en general entiende que Ciencias Naturales se estudia cuando se quiere perseguir una carrera de medicina o de odontología, o sea, de salud humana. Pocas veces se conoce que hay otras alternativas como ciencias marinas. Así que espero que los estudiantes ayuden a regar la voz de que las ciencias naturales también son para otros tipos de carrera. Y también espero que ellos ayuden a hacer esa voz de cambio de que vivimos en una isla que es vulnerable y que necesitamos cambiar nuestro comportamiento para estar listos ante el cambio climático y que podamos conservar los recursos naturales. ¿Cómo llegaste a la ciencia? Realmente yo empecé estudiando en Colombia, en la Universidad del Valle. Estudié un bachillerato en biología y hice una concentración menor en entomología, porque en ese momento en mi vida mi intención era graduarme y trabajar en agricultura haciendo control de plagas. Pero en el bachillerato tomé un curso que se llama Ecología de Insectos, en el cual tuve que hacer un proyecto de investigación y eso me ayudó a descubrir que mi pasión era la ecología. Entonces, cuando terminé el bachillerato, solicité a la Universidad de Puerto Rico en el recinto de Río Piedras y ahí hice mi maestría y mi doctorado en Biología de Bosques Tropicales. Me gradué y entonces empecé a enseñar y cuando logré obtener una plaza de profesora en una universidad privada, pues entonces me di cuenta que no me gusta la manera en que tradicionalmente se enseña las ciencias naturales o la biología en un salón de clase. Entonces empecé a buscar oportunidades y entrenamientos para educar en de una manera no tradicional a los estudiantes. Por ejemplo, una de las grandes oportunidades que llegó a mí fue a través de una colaboración **** la Universidad de Maryland, donde hemos estado por más de diez años, este entrenando y proveyendo oportunidades de investigación a estudiantes por fuera del salón de clase y por fuera de la universidad. Y es por estar involucrado en eso, en ese tipo de proyectos, que Juan Torres me invitó a participar de océanos. Share Details Last Updated Nov 12, 2024 Related TermsGeneralAmes Research Center's Science DirectorateEarth ScienceEarth Science Division Explore More 4 min read Entrevista **** Instructor de OCEANOS Roy Armstrong Article 33 mins ago 4 min read Entrevista **** Instructor de OCEANOS Juan Torres-Pérez Article 35 mins ago 1 min read ***** History with R. Walter Cunningham Article 5 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  10. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Roy Armstrong, un instructor de la pasantía de OCEANOS y profesor de ciencias marinas, pilotea un pequeño bote alrededor de los cayos frente a la costa de La Parguera, Puerto Rico.NASA ARC/Milan Loiacono Read this interview in English here ¿Cuál es tu nombre y tu rol en OCEANOS? Mi nombre es Roy Armstrong y soy profesor del Colegio de Mayagüez en el Departamento de Ciencias Marinas y en Océanos. Yo soy el investigador principal local en la Universidad de Puerto Rico y la manera que me involucré en este proyecto fue por invitación de mi ex estudiante, Juan Torres, quien trabaja en la NASA y se ideó este programa para motivar estudiantes hispanos puertorriqueños, particularmente a seguir carreras en la oceanografía usando tecnología de la NASA. ¿Cuál es la importancia de un programa como OCEANOS, particularmente en Puerto Rico? Primero, porque son muy pocos los jóvenes que deciden continuar en sus estudios graduados y sobre todo en las ciencias marinas. Y muchos se van fuera de Puerto Rico. Lo que queremos hacer es motivar a estudiantes desde jóvenes, desde escuela superior y a principios de universidad, a que estudien y tengan carreras en la oceanografía, las ciencias marinas, usando tecnología de la NASA, satelital y robótica, etcétera para que entonces se queden en Puerto Rico y trabajen protegiendo nuestros recursos naturales. ¿Qué ha sido algo gratificante de trabajar **** estos estudiantes? Ha sido de gran satisfacción ver como los estudiantes se interesan en estos temas, aunque al principio lleguen **** otras ideas en mente de otras carreras que quieren proseguir. Al final algunos deciden cambiar por completo sus preferencias y estudiar entonces ciencias marinas o seguir alguna carrera en tecnologías satelitales o cosas por el estilo. Así que eso para nosotros ha sido de suma satisfacción. ¿Cuál ha sido un desafío del programa? El reto principal de trabajar **** estudiantes primero es mantenerlos motivados y atentos. Así que hay que intercalar diferentes actividades fuera del salón. Las charlas no pueden ser muy extensas y también los temas tienen que ser diversos. Tratamos de que también ellos participen en actividades, en pequeños grupos y participen en proyectos diferentes proyectos de investigación, así que no es todo estar oyendo charlas en un salón de clase, sino que hay muchas otras actividades. ¿Cómo llegaste a la ciencia? Yo empecé **** mi interés en las ciencias marinas desde pequeño, porque yo nací en Puerto Rico, en Ponce y siempre he tenido una admiración inmensa por el mar. Y luego tuve la experiencia en mi 4.º año de universidad en los Estados Unidos de participar en un programa que se llama ‘el semestre en el mar,’ donde participé por seis semanas en un velero grande haciendo estudios de Oceanografía y eso me fascinó, me encantó. Y desde entonces yo supe que eso es lo que yo quería hacer en mi carrera. ¿Cuáles son algunos de los cambios ambientales que ha notado en Puerto Rico y sus alrededores? En Puerto Rico, al igual que muchas áreas del Caribe y del planeta en general, han ocurrido muchos cambios a través de las décadas. El ambiente marino en las costas y sobre todo en los arrecifes de coral en Puerto Rico. En particular, luego de varios huracanes al final de la década de los setentas una mortandad grande de los corales en aguas bien someras y luego eso dio lugar a enfermedades que afectan los corales por muchos años. En años más recientes hemos tenido también el impacto del humano porque ha habido más presión en los ecosistemas por el uso de múltiples embarcaciones que cada vez son más y más. Así que también se ha deteriorado la calidad de agua en muchos sitios. Y sabemos que esto no es exclusivamente de Puerto Rico, sino que es un problema básicamente a nivel global. ¿Qué es algo que espera que los estudiantes se lleven **** ellos cuando se vayan? Pues mi esperanza **** los estudiantes es que en los próximos años que pasen a universidad o que pasen a escuela graduada para estudiar entonces temas relacionados **** las ciencias marinas y el uso de la tecnología satelital de la NASA. También espero que se motiven a permanecer en Puerto Rico y participar en el cambio que hace falta de protección de los ecosistemas de parte de una nueva generación que vienen desde pequeño **** el interés y también el conocimiento de hacer un cambio notable en el futuro de este país y de nuestros ecosistemas. Share Details Last Updated Nov 12, 2024 Related TermsGeneralAmes Research Center's Science DirectorateEarth ScienceEarth Science Division Explore More 4 min read Entrevista **** Instructor de OCEANOS Juan Torres-Pérez Article 4 mins ago 1 min read ***** History with R. Walter Cunningham Article 4 hours ago 1 min read ***** History with Karol J. Bobko Article 5 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  11. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) OCEANOS Investigador Principal Juan Torres-Pérez, científico investigador del Centro de Investigación Ames de la NASA, sostiene dos piezas de cianobacterias en las aguas de Playa Melones, Isla Culebra (Puerto Rico) durante la pasantía de OCEANOS 2024. El crecimiento excesivo de cianobacterias probablemente sea causado por una fuente de contaminación terrestre que se filtra hacia las aguas.NASA ARC/Milan Loiacono Read this interview in English here ¿Cuál es tu nombre y tu rol en OCEANOS? Mi nombre es Juan Torres Pérez. Yo soy un científico de la NASA del Centro de Investigación Ames en California particular la División de Ciencias Terrestres, la rama biofísica. Yo soy el investigador principal de OCEANOS. Océanos significa, en inglés, ‘Ocean Community Engagement and Awareness with NASA Observations and Science’ for Hispanic/Latino Students. La abreviación OCEANOS es en español a propósito, porque es un proyecto dedicado a estudiantes hispanos y latinos. ¿Cuál es la importancia de un programa como OCEANOS, particularmente en Puerto Rico? La importancia de un programa como océanos es sencilla cuando miramos a las estadísticas de las minorías en Estados Unidos. La minoría más grande actualmente en Estados Unidos, somos los hispanos y los latinos. Sin embargo, cuando miramos al porcentaje de los latinos y hispanos que trabajan en la geociencias y muy en particular en la oceanografía, es mínimo. Eso es bien, bien pequeño. Así que traer un programa como OCEANOS a la comunidad hispana y latina y darle la oportunidad a los estudiantes a envolverse en un programa como este, es una oportunidad única y en particular, pues lo estamos haciendo en Puerto Rico: una de las jurisdicciones de Estados Unidos, mayormente de habla hispana. Y estamos trayendo esta oportunidad a los estudiantes puertorriqueños para que se envuelvan en este tipo de actividades y en la conservación de los ecosistemas marinos. ¿Qué ha sido algo gratificante de trabajar **** estos estudiantes? El año pasado, cuando hicimos el piloto, tuvimos muchos estudiantes que se nos acercaron dándonos las gracias. Muchos estudiantes nos dijeron que esta ha sido una experiencia única. Este año hemos tenido estudiantes de igual forma que ya se nos han acercado para decirnos si hay oportunidad para ser mentores para el año que viene también. Y no solamente eso: hemos tenido estudiantes que al principio, el primer día nos dijeron que no sabían nadar. Tres semanas después ya están haciendo snorkeling, están sumergiéndose, están trabajando debajo del agua y están haciendo algo único que jamás en su vida ellos pensaron que iban a ser. ¿Cuáles son algunas de las actividades que realizan los estudiantes como parte del programa? Algunas de las actividades que los estudiantes hacen, por ejemplo, es que están caracterizando arrecifes de coral, tanto en La Parguera como en Culebra. Están trabajando ****. Cuáles son las especies que dominan, cuáles son las especies que están afectadas por distintos factores, ya sean climáticos o factores antropogénicos. También están haciendo perfiles de playa para ver cómo la playa crece o se se hace más pequeña **** el tiempo. También están haciendo trabajos de calidad de agua, tanto aquí en Culebra como en el área de La Parguera, para comparar cómo está la calidad de agua en los no solamente en los distintos arrecifes alrededor de Culebra y los distintos arrecifes de La Parguera, sino también cómo comparan las dos áreas; el este de Puerto Rico y el suroeste de Puerto Rico. ¿Qué es algo que espera que los estudiantes se lleven **** ellos cuando se vayan? Lo más importante que nosotros queremos que los estudiantes lleven **** ellos es que se conviertan en agentes de cambio. Y esto significa que ellos sirvan de los locutores, de las personas que van a pasar la información, ya sea a sus familiares, a sus escuelas, a sus comunidades, también sus hermanos, sus hermanas, sus papás, sus abuelos; a todo el mundo. La idea es de que esto se convierta en algo en que muchas de que crezca y que entonces todas esas personas pues entiendan la importancia que es conservar los ecosistemas marinos en Puerto Rico y todas las herramientas que tenemos para poder estudiar estos ecosistemas de forma tal que podamos protegerlos. Share Details Last Updated Nov 12, 2024 Related TermsGeneralAmes Research Center's Science DirectorateEarth ScienceEarth Science Division Explore More 4 min read Entrevista **** Instructor de OCEANOS Roy Armstrong Article 2 mins ago 1 min read ***** History with R. Walter Cunningham Article 4 hours ago 1 min read ***** History with Karol J. Bobko Article 5 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  12. JPL is a research and development lab federally funded by NASA and managed by Caltech. NASA/JPL-Caltech Workforce statement and memo to employees JPL statement issued on Nov. 12, 2024: While we have taken various measures to meet our current FY’25 budget allocation, we have reached the difficult decision to reduce the JPL workforce through layoffs. This reduction affects approximately 325 of our colleagues, an impact of about 5% of our workforce. The impacts are occurring across technical, business, and support areas of the Laboratory. These are painful but necessary adjustments that will enable us to adhere to our budget while continuing our important work for NASA and our nation. The following is a memo sent earlier today from JPL Director Laurie Leshin to employees: Dear Colleagues, This is a message I had hoped not to have to write. I’m reaching out to share the difficult news that JPL will be taking a workforce action tomorrow, Nov. 13, resulting in a layoff of approximately 325 of our colleagues, or ~5% of our workforce. Despite this being incredibly difficult for our community, this number is lower than projected a few months ago thanks in part to the hard work of so many people across JPL. The workforce assessment conducted as part of this process has been both extensive and thorough, and although we can never have perfect insight into the future, I sincerely believe that after this action we will be at a more stable workforce level moving forward. How we got here: During our last town hall, I discussed our continued funding challenges and projections of what the potential impact on our workforce could look like. I shared that we had been working through multiple workforce scenarios to address the dynamic funding environment, and that we have been doing everything we can, in partnership with our colleagues at NASA and elsewhere, to minimize adverse effects on JPL’s capabilities and team. Unfortunately, despite all these efforts, we need to make one further workforce reduction to meet the available funding for FY’25. This reduction is spread across essentially all areas of the Lab including our technical, project, business, and support areas. We have taken seriously the need to re-size our workforce, whether direct-funded (project) or funded on overhead (burden). With lower budgets and based on the forecasted work ahead, we had to tighten our belts across the board, and you will see that reflected in the layoff impacts. As part of our workforce assessment and determining where reductions are being made, we have taken time to complete a full review of our competencies, future mission needs, and we have established guidance for our core capabilities across the Laboratory. We have worked closely with the Executive Council, division managers, project leadership and others to ensure we maintain the appropriate levels of technical expertise, capacity for innovation, and ability to deliver on an exciting future for JPL. Our focus will continue to be on empowering managers to support their teams through this action and equipping all of us with a variety of resources as we move forward together. Here are the details about what will happen tomorrow: Unless notified otherwise, all employees are required to work from home tomorrow Nov. 13, regardless of their telework status. Tomorrow you will be invited to a short, virtual, Lab-wide meeting with myself and Deputy Director Leslie Livesay at 9:30 a.m. We will relay the details of where we are in the process and what to expect. Please look out for the meeting notification that will follow this memo. There will not be organization-level notification meetings as in February. This one meeting will provide the information needed for the entire Lab at once. Our approach is to prioritize notifying everyone via email as quickly as possible whether their role is being affected by the layoff or not. Then we can rapidly shift to providing personalized support to our *****-off colleagues who are part of the workforce reduction, including offering dedicated time to discuss their benefits, and several other forms of assistance. Because of system limitations, the individual email notifications will take place over several hours tomorrow. A schedule of the notifications, which will occur by organization, will be shared in the virtual briefing tomorrow morning and also posted on JPL Space, the JPL HR Website, and Slack. You can also find answers to Frequently Asked Questions (FAQs) on our website here. Our JPL Community: I know the absence of our colleagues will be acutely felt, especially after a very challenging year for the Lab. To those leaving JPL as a result of this action, we are grateful for your many vital contributions to JPL and to NASA. We will be here to support you during this time to ensure this transition is as smooth as possible. To reiterate to you all, I believe this is the last cross-Lab workforce action we will need to take in the foreseeable future. After this action, we will be at about 5,500 JPL regular employees. I believe this is a stable, supportable staffing level moving forward. While we can never be 100% certain of the future budget, we will be well positioned for the work ahead. This may not help much in this difficult moment, but I do want to be crystal clear with my thoughts and perspective. If we hold strong together, we will come through this, just as we have done during other turbulent times in JPL’s nearly 90-year history. Finally, even though the coming leadership transition at NASA may introduce both new uncertainties and new opportunities, this action would be happening regardless of the recent election outcome. While I know many of us are feeling anger or disappointment with this news, I encourage everyone to act with grace and empathy toward one another, and to lean on each other for support. I will be speaking with you again very soon to discuss our path ahead. Until then, know that we are an incredibly strong organization – our dazzling history, current achievements, and relentless commitment to exploration and discovery position us well for the future. Laurie Share Details Last Updated Nov 12, 2024 Related TermsJet Propulsion Laboratory Explore More 4 min read Mining Old Data From NASA’s Voyager 2 Solves Several Uranus Mysteries Article 1 day ago 6 min read Powerful New US-Indian Satellite Will Track Earth’s Changing Surface Article 4 days ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami Article 2 weeks ago View the full article
  13. 1 Min Read ***** History with R. Walter Cunningham Lunar module pilot Walter Cunningham writes with a space pen as he performs flight tasks on the ninth day of the Apollo 7 mission. Credits: NASA Selected for NASA’s third astronaut class in 1963, Cunningham served as the backup Lunar Module Pilot for Apollo 1. He piloted the 11-day flight of Apollo 7 in October 1968, the first manned flight test of the Apollo spacecraft. The crew ********* maneuvers enabling them to practice for upcoming Apollo lunar orbit rendezvous missions and provided the first live television transmission of onboard crew activities. Cunningham served as the Chief of the Skylab branch under the Flight Crew Directorate at Johnson Space Center in 1969 until his retirement and move to the private sector in 1971. Read more about R. Walter Cunningham NASA ***** History, May 24, 1999 NASA Biography Apollo Astronaut Walter Cunningham ***** at 90 The transcripts available on this site are created from audio-recorded ***** history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the ***** history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members. View the full article
  14. 1 Min Read ***** History with Karol J. Bobko View of STS 51-D crew commander Karol Bobko training with the Arriflex 16mm camera. Credits: NASA A veteran of three space flights, Karol J. “Bo” Bobko was selected as an astronaut in 1969 and served as a crewmember on the Skylab Medical Experiments Altitude Test (SMEAT) 56-day ground simulation in preparation for the Skylab missions. He served in various positions supporting the Apollo-Soyuz Test Project and the first Approach and Landing Tests for the Space Shuttle before flying as the STS-6 pilot and as the mission commander on STS-51D and STS-51J. Read more about Karol J. “Bo” Bobko NASA ***** History, February 12, 2002 NASA Biography The transcripts available on this site are created from audio-recorded ***** history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the ***** history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members. View the full article
  15. (Oct. 25, 2024) — NASA astronaut and Expedition 72 Commander Suni Williams is pictured at the galley inside the International Space Station’s Unity module at the beginning of her day.Credit: NASA Students from Colorado will have the opportunity to hear NASA astronauts Nick Hague and Suni Williams answer their prerecorded questions aboard the International Space Station on Thursday, Nov. 14. Watch the 20-minute space-to-Earth call at 1 p.m. EST on NASA+. Learn how to watch NASA content on various platforms, including social media. The JEKL Institute for Global Equity and Access, in partnership with the Denver Museum of Nature and Science, will host students from the Denver School of Science and Technology for the event. Students are building CubeSat emulators to launch on high-altitude balloons, and their work will drive their questions with crew. Media interested in covering the event must RSVP by 5 p.m., Wednesday, Nov. 13, to Daniela Di Napoli at: *****@*****.tld or 832-656-5231. For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network. Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the ******* States continues to lead in space exploration and discovery. See videos and lesson plans highlighting space station research at: [Hidden Content] -end- Tiernan Doyle Headquarters, Washington 202-358-1600 *****@*****.tld Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p*****@*****.tld Share Details Last Updated Nov 12, 2024 EditorTiernan P. DoyleLocationNASA Headquarters Related TermsInternational Space Station (ISS)AstronautsCommunicating and Navigating with MissionsHumans in SpaceISS ResearchJohnson Space CenterNear Space NetworkSpace Communications & Navigation ProgramSunita L. Williams View the full article
  16. On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station. Now in its fifth year, the Kibo ****** Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation. The Kibo ****** Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the ******* Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage. Meet Team Salcedo Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge. From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields. Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities. AstroBee Takes Flight The 2024 competition tasked students with programming AstroBee, a free-flying ****** aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station. The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The ****** ********* its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach. Overcoming Challenges in Real Time Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the ****** could identify and target images scattered throughout the station with precision while minimizing the time spent between locations. The Kibo-RPC students watch in real time as the free-flying ****** Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the ****** to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment. The Power of Teamwork and Mentorship Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred. Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school. The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition. They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees. “The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.” Pushing the Boundaries of Innovation The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering. The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration. Inspiring the Next Generation With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators. The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders. The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration. “With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.” The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place. Watch the international final round event here. For more information on the Kibo ****** Programming Challenge, visit: [Hidden Content] View the full article
  17. NASA/Loral O’Hara The Choctaw Heirloom Seeds investigation flew five varieties of heirloom seeds from the Choctaw Nation of Oklahoma aboard the International Space Station in early November 2023. The seeds are Isito (Choctaw Sweet Potato Squash), Tobi (Smith Peas), Tanchi Tohbi (Flour Corn), Tvnishi (Lambsquarter), and Chukfi Peas. The seeds spent six months aboard station, returning to Earth in April 2024. Next spring, Jones Academy students will plant the space-flown seeds alongside Earth-bound seeds of the same type in the school’s Growing Hope Garden. Students will hypothesize how the seeds will grow and make observations throughout the growing season. Middle school teachers are developing curriculum incorporating the seeds’ journey to space station and students’ experiments in the garden. This research could impact Native and Indigenous populations across the ******* States, inviting underrepresented groups to engage with science, technology, engineering, and mathematics. Image credit: NASA/Loral O’Hara View the full article
  18. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA/Quincy Eggert The design and build of a unique NASA pod, produced to advance computer vision for autonomous aviation, was recently completed in-house at NASA’s Armstrong Flight Research Center in Edwards, California, by using the center’s unique fabrication capabilities. The pod is called the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE). NASA Armstrong can take an idea from a drawing to flight with help from the center’s Experimental Fabrication Shop. NASA researcher James Cowart adds the top back onto the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The pod houses sensors, wiring and cameras. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris NASA subject matter experts developed the idea for the project, after which engineers drew up plans and selected materials. The Experimental Fabrication Shop received those plans and gathered the materials to fabricate the pod. After the pod was built, it moved to NASA Armstrong’s Engineering Support Branch, where electronics technicians and other specialists installed instruments inside of it. Once completed, the pod went through a series of tests at NASA Armstrong to make sure it was safe to fly at NASA’s Kennedy Space Center in Florida on an Airbus H135 helicopter. The engineering team made final adjustments to ensure the pod would collect the correct data prior to installation. More about the design and fabrication process, and the pod’s capabilities, is available to view in a NASA video. NASA researchers James Cowart and Elizabeth Nail add sensors, wiring and cameras, to the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris Share Details Last Updated Nov 12, 2024 EditorDede DiniusContactTeresa Whiting*****@*****.tld Related TermsAdvanced Air MobilityAeronauticsAmes Research CenterArmstrong Flight Research CenterDrones & YouGlenn Research CenterKennedy Space CenterLangley Research Center Explore More 4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias Article 1 day ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman Article 1 day ago 4 min read Interview with OCEANOS Instructor Roy Armstrong Article 1 day ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Aeronautics Advanced Air Mobility Mission NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on… Armstrong Capabilities & Facilities View the full article
  19. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study. The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency. Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point. JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft. Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond. Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Quesst: The Vehicle Explore NASA’s History Share Details Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Banke*****@*****.tld Related TermsAeronautics Research Mission DirectorateAdvanced Air Transport TechnologyAdvanced Air Vehicles ProgramSustainable Flight DemonstratorSustainable Flight National Partnership View the full article
  20. Vanessa Wyche, director of NASA’s Johnson Space Center provides an update on Exploration Park on Feb. 15, 2022, at the ASCENDxTexas conference at South Shore Harbor Resort and Conference Center. Credit: NASA / Josh Valcarcel Nov. 12, 2024 Director Vanessa Wyche of NASA’s Johnson Space Center in Houston will join Texas A&M University leaders and guests Friday, Nov. 15, to break ground for the new Texas A&M University Space Institute. U.S. media interested in participating in person must contact the NASA Johnson newsroom no later than 5 p.m. Wednesday, Nov. 13, by calling 281-483-5111 or emailing: *****@*****.tld. NASA’s media accreditation policy is available online. The groundbreaking is planned for 10 a.m. CST Nov. 15, at Johnson Space Center’s Exploration Park. Additional participants will include: Greg Bonnen, Texas House of Representatives, chairman of House Appropriations Committee William Mahomes, Jr., Board of Regents chairman, Texas A&M University System John Sharp, chancellor Texas A&M University System General (Ret.) Mark Welsh III, president, Texas A&M University Robert H. Bishop, vice chancellor and dean, Texas A&M Engineering Nancy Currie-Gregg, director, Texas A&M University Space Institute Robert Ambrose, associate director for space and robotics initiatives, Texas A&M Engineering Experiment Station The institute, funded through a $200 million initial investment from the State of Texas, will support research for civilian, defense and commercial space missions as part of NASA Johnson’s Exploration Park. Key features will include the world’s largest indoor simulation spaces for lunar and Mars surface operations, state-of-the-art high-bay laboratories, and multifunctional project rooms. The Texas A&M Space Institute is set to open in Summer 2026. NASA is leasing the 240-acre Exploration Park to create facilities that enable a collaborative development environment, increase commercial access, and enhance the ******* States’ commercial competitiveness in the space and aerospace industries. To learn more about NASA Johnson and the Texas A&M University Space Institute, visit: [Hidden Content] -end- Kelly Humphries Johnson Space Center, Houston 281-483-5111 kelly.o*****@*****.tld View the full article
  21. Name: Matthew Kowalewski Title: Dragonfly Mass Spectrometer (DraMS) Lead Instrument Systems Engineer Formal Job Classification: Aerospace Engineer Organization: Instrument and Payload Systems Engineering Branch (Code 592) Matthew Kowalewski (second from left) is the lead instrument systems engineer for NASA’s Dragonfly Mass Spectrometer (DraMS). Photo courtesy of Matthew Kowalewski What do you do and what is most interesting about your role here at Goddard? As the DraMS lead instrument systems engineer for NASA’s Dragonfly mission, I lead the coordinated technical development, integrating systems and making sure communications across subsystems is maintained within the instruments as well as with the lander. I enjoy the diversity and complexity of this instrument. What do you enjoy most about your current position as the DraMS lead instrument systems engineer? I started this position in March 2023 and it has been like drinking from a ***** hose ever since, but in a good way. The complexity of the instrument and the number of subsystems means this is really three separate instruments in one, and that makes my job exciting. I have to keep up with a range of disciplines across everything that Goddard does including mechanisms, lasers, mass spectrometers, gas flow systems, mechanical systems, thermal systems and electrical systems. I am always challenged and excited by those challenges too. Everything we do is necessary to meet the broad science requirements. Our goal is studying prebiotic chemistry on the surface of Titan. What is your educational background? Why did you become an aerospace engineer? I have a B.A. in astronomy and physics from Boston University and a master’s in physics from Johns Hopkins University. As a child, I was more interested in astronomy and physics. In college, I developed an extreme interest in experimental physics including the engineering required to perform these experiments. How did you come to Goddard? After college, I worked in missile defense for a private company supporting the Midcourse Space Experiment. After three years, in 1998, my wife and I wanted to move closer to family, so I came to Goddard as an instrument engineer supporting the Total Ozone Mapping Spectrometer-Earth Probe (TOMS/EP) mission. I have also supported the Ozone Monitoring Instrument on Aura, The Ozone Mapping Profiler Suite (OMPS) on Suomi NPP and JPSS, various airborne field campaigns, and the New Opportunities Office. What interesting field work did you do prior to joining DraMS? I largely did field work supporting Earth science research and new business development. We flew remote sensing instruments on high altitude aircraft in the ******* States, Costa Rica, South Korea [whose official name is the Republic of Korea], and Canada. Most field campaigns lasted about a month where we were housed in hotels or military bases. While supporting the New Opportunities Office, we developed instrument and mission concepts, evaluated and prioritized technologies, and fostered relationships with industry, universities, and other government organizations. How do you lead across multiple teams? I lead a large team engineers and technicians spanning across over six teams. Communication is the key. I rely on the expertise of our systems team and all of the subsystem leads. We have daily and weekly meetings where everyone is heard and they are free to approach me whenever they have concerns. I try to encourage open discussions including contrarian thoughts and ideas. I listen to all the options and opinions in an attempt to make the best-informed decision. Then I move forward with my decision. In a cost- and schedule-constrained environment, like most missions are, we cannot get stuck in the decision-making process. At some point, a decision needs to be made and the team then moves forward. Where have you traveled for work? I have been to multiple NASA centers and military bases in this country. In addition to Costa Rica, South Korea and Canada, I have also been to the Netherlands and France for mission development. What is the most memorable moment you have had at Goddard? In 2003, I was supporting the space shuttle Columbia mission, STS-107. We had a small payload in the shuttle cargo bay called a Hitchhiker. I was second shift in the Hitchhiker mission operations center. I got to interact with the astronauts both prelaunch and on orbit. It meant a lot to me. My last shift was just prior to their reentry. It really impacted me when I learned, after my shift, that the shuttle disintegrated with all hands lost. I had the honor of meeting these astronauts. It reminded me of the importance of the work that we do as we continue sending astronauts into orbit for missions. When you mentor someone, what do you advise them to do? I tell them to learn as much about everything that they can. For example, if they are an engineer, they should learn about science and other disciplines because a broad knowledge base will help them in the future. They will also learn why building a small piece of hardware is important for accomplishing the mission’s science goals. An electrical engineer building a circuit is actually building something for a far larger purpose. It is also very important to get along with others. We work with others every day, in all aspects of our lives, and we have to understand their perspectives and respect their opinions. There is more to our jobs than building things. Establishing relationships with others is what truly allows us to accomplish our goals. What do you do for fun? I have four kids and enjoy spending time with them. I coach soccer, mentor a robotics club, and participate in endurance swim races. This is my second year as a mentor to my son’s robotics club, which participates in an annual, national robotics competition to build a ****** from scratch. This year we have a highly mobile, fast ****** with a multi-jointed arm to manipulate objects. I think we have a good shot at going to nationals. Who would you like to thank? I wish to thank my wife ****** for supporting me over all these years as my career developed. She was often home alone with four kids during long stints of travel. I would not be where I am without her. I also owe much to my mentors, Scott Janz, Glenn Jaross, and Jay Al-Saadi for all their guidance, support and opportunities over the many years. Nobody can work alone, no matter how smart you are. What is your “five-word or phrase memoir”? A five-word or phrase memoir describes something in just five words or phrases. Understanding. Compassionate. Persistent. Hard-working. Curious about too many things. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Nov 12, 2024 EditorRob GarnerContactRob Garner*****@*****.tldLocationGoddard Space Flight Center Related TermsPeople of GoddardDragonflyGoddard Space Flight CenterPeople of NASA View the full article
  22. Name: Dr. Inia Soto Ramos Title and Formal Job Classification: Associate Research Scientist Organization: Ocean Ecology Laboratory (Code 616) via Morgan State University and GESTAR II cooperative agreement Dr. Inia Soto Ramos is an associate research scientist with NASA’s PACE — the Plankton, Aerosol, Cloud, ocean Ecosystem mission — at the agency’s Goddard Space Flight Center in Greenbelt, Md.Photo courtesy of Inia Soto Ramos What do you do and what is most interesting about your role here at Goddard? I am currently co-leading the validation efforts for PACE, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem mission. I am also part of NASA’s SeaBASS (SeaWiFS Bio-optical Archive and Storage System) team, which is responsible for archiving, distributing, and managing field data used for validation and development of satellite ocean ****** data products. It has been exciting to be a part of a satellite mission, to see it being built, tested and launched. And now, be able to validate the data and in the near future, use the data to do science. What is your educational background? I graduated with a bachelor’s degree in biology from The University of Puerto Rico, Mayagüez Campus, and I have a master’s and Ph.D. in Biological Oceanography from the University of South Florida. How did you get your foot in the door at NASA? While I was a student at the University of Puerto Rico, I saw a flyer for a program called PaSCoR (Partnership for Spatial and Computational Research). It was a partnership between universities, NASA and other institutions with the intent to train students in remote sensing and Geographical Information Systems. Although, this program was targeted mainly for engineers, I decided to apply. That took me to the first remote sensing classes I had taken. That’s how I started learning that you can study the ocean from space. I had no idea that could be done. That program planted the curiosity about satellite oceanography and gave me the tools to go into graduate school in that field. How did you first gain exposure to oceanography and diving? I am from Puerto Rico and grew up all the way in the mountains. There wasn’t much of a connection to the ocean for me, only a few trips to the beach. I remember my dad taking me to a small beach called La Poza del Obispo in Arecibo and he held me while I used a small snorkel underwater. That was the first connection I had with marine life. I started diving sometime when I was about 18 years old, and I remember saying, “This is the most amazing thing ever,” and that’s when I decided I needed to pursue a life in that field. What interested you in phytoplankton as a specialty? Initially, I was curious about harmful algal blooms in the West Florida Shelf, which I studied when I moved to Florida to do my grad studies. I learned that the blooms can produce neurotoxins, and those can affect humans in different ways. So, if you have asthma, they can make you feel worse. I remember developing asthma that night after going to the beach and having go to the ER. I didn’t see the connection at the time until I learned about these events and how toxins can get in the air. It felt like something important that I could study to help people or do something that’s meaningful. It’s amazing that we can see something so tiny from space and study them. How does your identity, being a Latina, show up at NASA? This is kind of a dream come true. It is so amazing to be able to fulfill that dream. I came from a small town. There appeared to me no chances to come all the way to NASA. So, having this opportunity is exciting, and bringing it back to my community and saying, “Hey, anyone can actually do it.” One of the advantages is that you speak a different language, so you can make connections with different countries. What do you look forward to in the future? What are some of your goals? I would love to keep growing in my field. As a mother, sometimes is hard to visualize where I want to be in the future, so I find it best to focus on the present. My priority right now is my family, however in the future I would love to engage in a job in which I can transfer my knowledge and love to the oceans to future generations; and be more involved in the community. When you think of your village and growing up in Puerto Rico, what is a memory you have that makes you smile? I still remember going to collect coffee with my mom and dad. My dad had a small basket for me that I would fill with only the most beautiful red grains of coffee. I was around 5 years old, and I remember the toys that my mom would take, and they’d settle me under the coffee trees. I still go to Puerto Rico, and I am fascinated when I see the coffee trees; it reminds me of my childhood. What advice would you give to other little ****** who might not think NASA is a dream they can achieve? I was the little girl with the dream of being a scientist at NASA, and then I was a teenager, an ******, and a mother, all with the same dream! It took me several decades and many life stages to get here. Many times, along my path, I thought of giving up. Others, I thought I was completely off track and I would never fulfill my dream. I had limited resources while growing up. There were no fancy swimming or piano classes, but I had amazing teachers and mentors who guided me along the way. So, no matter how young or old you are, you can still fulfill that dream. The key to success is to know where you want to go, surround yourself with people that believe in you, and if you fall, just shake it off and try again! By Alexa Figueroa NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Nov 12, 2024 EditorRob GarnerContactRob Garner*****@*****.tldLocationGoddard Space Flight Center Related TermsPeople of GoddardEarthGoddard Space Flight CenterPACE (Plankton, Aerosol, Cloud, Ocean Ecosystem)People of NASASeaWiFS (Sea-viewing Wide Field-of-view Sensor) View the full article
  23. Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Peculiar Pale Pebbles NASA’s Perseverance rover acquired this image of a field of bright white float rocks on the Jezero crater rim using its onboard Right Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. The image was acquired on Oct. 27, 2024 (Sol 1311) at the local mean solar time of 16:02:45. NASA/JPL-Caltech Perseverance acquired this image of a possible breccia outcrop on the Jezero crater rim using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on Oct. 27, 2024 (Sol 1311) at the local mean solar time of 12:52:58. NASA/JPL-Caltech/**** During its recent exploration of the crater rim, Perseverance diverted to explore a strange, scattered field of bright white rocks which sparked the interest of the team scientists. Perseverance has been climbing up the steep slopes of the Jezero crater rim for over two months now, and ever since approaching the edge of the crater has been spying increasingly diverse and strange-looking rocks. Back in the Jezero inlet channel, Neretva Vallis, Perseverance spotted a whole host of colourful boulders at Mount Washburn, and more recently the science team and internet alike were mesmerised by Freya Castle – a rock striped like a zebra! The crater rim hasn’t finished delivering surprises yet though… Just as we humans were preparing for Halloween back on Earth, a ghostly field of bright white rocks appeared in Perseverance’s view, at the base of a mound in the crater rim termed “Mist Park”, and sparking a new mystery for the science team to unravel. On Earth, we find white rocks in a wide array of geologic settings, and that’s not surprising given the diverse array of light-toned minerals which can be generated across Earth’s various tectonic settings. On Mars however, with its lack of plate tectonics and a basaltic crust dominated by dark minerals like olivine and pyroxene, white rocks are a rare find. The science team planned several observations using Perseverance’s remote sensing instruments to assess the composition of these peculiar pebbles, including multispectral imaging with Mastcam-Z and zapping them with Supercam’s laser. Hopefully these observations can shed light on how these white rocks formed all the way up here on the crater rim. Unfortunately, none of the rocks were big enough to safely inspect them up close with Perseverance’s robotic arm instruments, but the team are on the lookout for larger blocks or outcrops of this strange lithology as we continue traversing upslope. Aside from their composition, another mystery is just how these rocks got here. The blocks are all float (float = loose rocks, not in their original location), and scattered over just a few square meters. Perhaps these could be erosional leftovers of some kind of resistant vein or rock layer, where the softer, surrounding lithologies have eroded away? Or could these blocks have tumbled downslope from a more continuous bedrock exposure of enigmatic white material? Who knows, but Perseverance will be keeping its eyes peeled for more of these bizarre blocks as it continues to summit new heights… Written by Alex Jones, PhD student at Imperial College London Downloads Perseverance Raw Images Mars Perseverance Sol 1311: Right Navigation Camera (Navcam) Nov 12, 2024 PNG () Mars Perseverance Sol 1311: Left Mastcam-Z Camera Nov 12, 2024 PNG () Share Details Last Updated Nov 12, 2024 Related Terms Blogs Explore More 2 min read Sols 4359-4361: The Perfect Road Trip Destination For Any Rover! Article 19 hours ago 4 min read Sols 4357–4358: Turning West Article 4 days ago 2 min read Mars 2020 Perseverance Joins NASA’s Here to Observe Program The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program,… Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  24. Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 22 min read NASA’s BlueFlux Campaign Supports Blue Carbon Management in South Florida Photo 1. A Mangrove stand lines the bank of Shark River, an Everglades distributary that carries water into the Gulf of Mexico’s Ponce De Leon Bay. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Introduction Along the southernmost rim of the Florida Peninsula, the arching prop roots or “knees” of red mangroves (Rhizophora mangle) line the coast – see Photo 1. Where they dip below the water’s surface, fish lay their eggs, enjoying the protection from predators that the trees provide. Among their branches, wading birds, such as the great blue heron and the roseate spoonbill establish rookeries to rear their young. The tangled matrix of roots collects organic matter and ocean-bound sediments, adding little-by-little to the coastline and shielding inland biology from the erosive force of the sea. In these ways, mangroves are equal parts products and engineers of their environment, but their ecological value extends far beyond this local sphere of influence. Mangroves are an important carbon dioxide (CO2) sink – responsible for removing CO2 from the atmosphere with impressive efficiency. Current estimates suggest mangroves sequester CO2 10 times faster and store up to 5 times more carbon than rainforests and old-growth forests. But as part of the ever-changing line between land and sea, they’re exceptionally vulnerable to climate disturbances such as sea level rise, hurricanes, and changes in ocean salinity. As these threats intensify, Florida’s sub-tropical wetlands – and their role as a critical sink of CO2 – face an uncertain future. NASA’s BlueFlux Campaign, a three-year (2021–2024), $1.5-million project operating under the agency’s Carbon Monitoring System, used field, aircraft, and satellite data to study the impact of both natural and anthropogenic pressures on South Florida’s coastal ecology. BlueFlux consists of a series of ground-based and airborne fieldwork campaigns, providing a framework for the development of a satellite-based data product that will estimate daily rates of surface-atmosphere gas transfer or gaseous flux across coastal ecosystems in Florida and the Caribbean. “The goal is to enhance our understanding of how blue-carbon ecosystems fit into the global carbon market,” said Ben Poulter [NASA’s Goddard Space Flight Center (GSFC)—Project Lead]. “BlueFlux will ultimately answer scientific questions and provide policy-related solutions on the role that coastal wetlands play in reducing atmospheric greenhouse gas (GHG) concentrations.” This article provides an overview of BlueFlux fieldwork operations – see Figure 1 – and outlines how the project might help refine global GHG budgets and support the restoration of Florida’s wetland ecology. Figure 1. A map of South Florida overlaying a true-****** image captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board NASA’s Terra satellite. Red triangles mark locations of primary ground-based fieldwork operations described in this article. Figure Credit: NASA’s Goddard Space Flight Center (GSFC) BlueFlux Ground-based Fieldwork Across the street from the Flamingo Visitors center, at the base of the Everglades National Park, there was once a thriving mangrove population. Now, the skeletal ******** of the trees form one of the Everglades’ largest ghost forests – see Photo 2. When Hurricane Irma made landfall in September 2017, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of the mangrove forest. Most of Florida’s mangroves recovered swiftly. But seven years later, this site and others like it have seen little to no growth. “At this point, I doubt they’ll ever recover,” said David Lagomasino [East Carolina University]. Photo 2. A mangrove ghost forest is all that ******** of a once-thriving mangrove stand, preserving an image of Hurricane Irma’s lasting impact on South Florida’s wetland ecology. Most of the ghost forests in the region are a product of natural depressions in the landscape that collect saltwater following severe storms. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lagomasino was in the Everglades this summer conducting research as part of the fifth leg of BlueFlux fieldwork – see Photo 3. His team focused on measuring how changes in wetland ecology affect the sequestration and emission rates of both CO2 and methane (CH4). In areas where vegetative health is severely degraded, like in ghost forests, a general decline in CO2 uptake is accompanied by an increase in CH4 production, the net effect of which could dramatically amplify the atmosphere’s ability to trap heat. Ghost forests offer an example at one end of an extreme, but defining the way more subtle gradients among wetland variables – such as changes in water level, tree height, canopy coverage, ocean salinity, or mangrove species distribution – might influence flux is ******* to tease out of the limited data available. Photo 3. Assistant professor David Lagomasino and Ph.D. candidate Daystar Babanawo [both from East Carolina University] explore the lower Everglades by boat. Due to the relative inaccessibility of the region, measurements of flux in wetland ecosystems are limited. The plant life here consists almost entirely of Florida’s three Mangrove species (red, ******, and white), which are among the only vegetation that can withstand the brackish waters characteristic of coastal wetlands. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) In the Everglades, flux measurements are confined to a handful of eddy covariance towers – or flux towers – constructed as part of the National Science Foundation’s (NSF) Long-Term Ecological Research (LTER) Network. The first flux tower in this network, erected in June 2003, stands near the edge of Shark River at a research site called SRS-6, short for Shark River Slough site 6. A short walk from the riverbank, across a snaking path of rain-weathered, wooden planks, sits a small platform where the flux tower is anchored to the forest floor – see Photo 4. About 20 m (65 feet) above the platform, the tower breaches the canopy, where a suite of instruments continuously measures wind velocity, temperature, humidity, and the vertical movement of trace atmospheric gases, such as water vapor (H2Ov), CO2, and CH4. It’s these measurements collectively that are used to calculate flux. Photo 4. At SRS-6, an eddy covariance tower measures C02 and CH4 flux among a dense grove of red, ******, and white mangroves. The term eddy covariance refers to the statistical technique used to calculate gaseous flux based on the meteorological and scalar atmospheric data collected by the flux towers. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) “Hundreds of research papers have come from this site,” said Lagomasino. The abundance of research generated from the data captured at SRS-6 speaks in part to the value of the measurements that the tower makes. It also points to the gaps that exist just beyond each tower’s reach. A significant goal of the BlueFlux campaign is to explain flux on a scale that isn’t covered by existing data – to fill in the gaps between the towers. One way to do that is by gathering data by hand. On Lagomasino’s boat is a broad, ****** case carrying a tool called a Russian peat auger. The instrument is designed to extract core samples from soft soils – see Photo 5. Everglades peat, which is made almost entirely of the partially decomposed roots, stems, and leaves of the surrounding mangroves, offers a perfect study subject. Each thin, half-cylinder sample gets sealed and shipped back to the lab, where it will be sliced into flat discs. The discs will be analyzed for their age and carbon content by Lagomasino’s team and partners at Yale University. These cores are like biomass time capsules. In Florida’s mangrove forests, a 1-m (3-ft) core might represent more than 300 years of carbon accumulation. On average, a 1 to 3 mm (0.04 to 0.12 in) layer of matter is added to the forest floor each year, building up over time like sand filling an hourglass. Photo 5. David Lagomasino holds a Russian peat auger containing a sample of Everglades peat. The primary source of the soil’s elevated carbon content – evident from its coarse, fibrous texture – is the partially decayed plant tissue of the surrounding mangroves. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Although coastal wetlands account for less than 2% of the planet’s land-surface area, they house a disproportionate amount of blue carbon – carbon stored in marine and coastal environments. In the Everglades, the source of this immense accumulation of organic material is the quick-growing vegetation – see Photo 6. When a CO2 molecule finds its way through one of the many small, porous openings on a mangrove leaf ­– called stomata – its next step is one of creation, where it plays a part in the miraculous transformation of inorganic matter into living tissue. Inside the leaf’s chloroplasts, energy from stored sunlight kickstarts a long chain of chemical reactions that will ultimately divide CO2 into its constituent parts. Oxygen atoms are returned to the atmosphere as the byproduct of photosynthesis, but the carbon stays behind to help build the sugar molecules that will fuel new plant growth. In short, the same carbon that once flowed through the atmosphere defines the molecular structure of all wetland vegetation. When a plant ***** or a gust of wind pulls a leaf to the forest floor, this carbon-based matter finds its way into the soil, where it can stay locked in place for thousands of years thanks to a critical wetland ingredient: water. The inundated, anoxic – an environment deficient or absent of oxygen – peat soils characteristic of wetlands host microbial populations that are uniquely adapted to their environment. In these low- to no-oxygen conditions, the prevailing microbiota consumes organic material slowly, leading to an accumulation of carbon in the soil. As wetland conditions change, the soil’s microbial balance shifts. For example, a decline in water level, which can increase the oxygen-content of the soil, produces conditions favorable to aerobic bacteria. These oxygen-breathing lifeforms consume organic matter far more rapidly than their anaerobic counterparts – and release more CO2 into the atmosphere as a result. Water level isn’t the only environmental condition that influences rates of carbon sequestration. The soil cores collected during the campaign will be analyzed alongside records of interrelated variables such as water salinity, sea surface height, and temperature to understand not just the timescales associated with blue carbon development in mangrove forests but how and why rates of soil deposition change in response to specific environmental pressures. In many parts of the Everglades, accumulated peat can reach depths of up to 3 m (9.8 feet) – holding thousands of years’ worth of insights that would otherwise be lost to time. Photo 6. Mangroves are viviparous plants. Their propagules – or seedlings – germinate while still attached to their parent tree. Propagules that fall to the forest floor are primed to begin life as soon as they hit the ground. But even those that fall into bodies of water and are carried out to sea can float for months before finding a suitable place to lay their roots. The high growth rate of mangroves contributes to the efficiency with which mangrove forests remove CO2 from the atmosphere. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Lola Fatoyinbo [NASA’s Goddard Space Flight Center (GSFC), Biospheric Sciences Lab] and Peter Raymond [Yale University’s School of the Environment] led additional fieldwork teams tasked with collecting forest inventory data in locations where vegetation was *****, regenerating, or recently ********** by severe weather events. A terrestrial laser system was used to obtain three-dimensional (3D) images of mangrove forest structure, which provided maps of stem density, vertical distributions of biomass, and stand volume surface area. Spectroradiometers were also used to acquire visible, near infrared, and shortwave infrared spectra, delivering detailed information about species composition, vegetative health, water levels, and soil properties. To tie these variables to flux, the researchers made measurements using chambers – see Figure 2 – designed to adhere neatly to points where significant rates of gas exchange occur, (i.e., mangrove lenticels—cell-sized breathing pores found on tree bark and root systems— and the forest floor). As an example, ****** mangroves (Avicennia germinans) possess unique aerial roots called pneumatophores that, similar to the prop roots of red mangroves, provide them with access to atmospheric oxygen. Pneumatophores sprout vertically from the forest floor and line up like matchsticks around the base of each tree. The team used cylindrical chambers to measure the transfer of gas between a single pneumatophore and the atmosphere – see Figure 2a. These observations are archived in NASA’s Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) and publicly available to researchers who wish to monitor and identify trends in the data. After nearly three years of field work, these data have already given scientists a more detailed picture of how Florida’s wetlands are responding to environmental pressures. Research based on data from early BlueFlux fieldwork deployments confirms that aerobic, methanogenic microbes living in flooded, wetland soils naturally release a significant amount of CH4 as a byproduct of the process by which they create their own energy. “We’re especially interested in this methane part,” said Fatoyinbo. “It’s the least understood, and there’s a lot more of it than we previously thought.” Fatoyinbo also noted a “significant difference in CO2 and CH4 fluxes between healthy mangroves and degraded ones.” In areas where mangrove health is in decline, due to reduced freshwater levels or as the result of damage sustained during severe weather events, “you can end up with more ‘bad’ gases in the atmosphere,” she said. Since CH4 is roughly 80 times more potent than CO2 over 100-year *******, these emissions can undermine some of the net benefits that blue carbon ecosystems provide as a sink of atmospheric carbon. Figure 2. To directly measure the emission and sequestration rates of CO2 and CH4 in mangrove forests, chambers were designed to adhere to specific targets where gas exchange occurs (i.e. mangrove lenticles, root systems, and the forest floor). Credit: GSFC Airborne Research Teams Measure GHG Flux from Above Florida’s mangrove forests blanket roughly 966 km2 (600 mi2) of coastal terrain. Even with over 20 years of tower data and the extensive measurements from ground-based fieldwork operations, making comprehensive inferences about the entire ecosystem is tenuous work. To provide flux data at scale – and help quantify the atmospheric influence that Florida’s coastal wetlands carry as a whole – NASA’s BlueFlux campaign relies on a relatively new, airborne technique for measuring flux – see Photo 7. Photo 7. At the Miami Executive Airfield, members of NASA’s BlueFlux airborne science team stand in front of the Beechcraft 200 King Air before the final flight of the fieldwork campaign. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Between 2022 and 2024, over 5 deployments, the team conducted more than 34 carefully planned flights – see Figure 3 – collecting flux data over Florida’s wetlands by plane. Each flight is equipped with a payload known colloquially as “CARAFE,” short for the CARbon Airborne Flux Experiment, which is the airborne campaign’s primary means of data collection. “This is one of the first times an instrument like this has flown over a mangrove forest anywhere in the world,” said Fatoyinbo. “So, it’s really just kind of groundbreaking.” Figure 3. An example of flight paths from eight BlueFlux airborne deployments flown in April 2023. The flight paths are highlighted in blue. The legs of each flight where flux measurements were taken are highlighted in green. Accurate flux calculations rely on stable measurements of the aircraft’s speed and orientation, which is why the flux legs of each flight are flown in straight lines. Credit: GSFC In the air, GHG concentrations are measured using a well-established technique called cavity ringdown spectroscopy, which involves ******* a laser into a small cavity where it will ping back and forth between two highly reflective mirrors. Most gas-phase molecules absorb light at specific wavelengths, depending on their atomic makeup. Since the target molecules in this case are CO2 and CH4, the laser is configured to emit light at a wavelength that only these molecules will absorb. As the laser bounces between the mirrors, a fraction of the light is absorbed by any molecules present in the chamber. The rate of the light’s decay is used to estimate CO2 and CH4 concentrations, generating a time series with continuous readings of gas concentrations, measured in parts per million – see Photo 8. This information is combined with measurements of vertical wind velocity to calculate a corresponding time series of fluxes along the flight track. While these measurements are important on their own, a priority for the airborne team is understanding GHG fluxes in relation to what’s happening on the ground. Photo 8. The CARAFE payload is responsible for taking readings of atmospheric CO2, CH4, and H2Ov levels using a wind probe and two optical spectroscopy instruments manufactured by Picarro: the G2401m Gas Concentration Analyzer and the G2311f Gas Concentration Analyzer. The readings pictured above were made by the G2311f, which measures gas concentrations at a faster rate than the G2401m. The G2401m makes slower but more stable measurements, which are necessary for verifying the accuracy of measurements made by the G2311f. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Unlike flux towers, which only collect data within a 100 m2 (328 ft2) “footprint,” airborne readings have a footprint that can stretch up to 1 km (0.6 mi) in upwind directions. The plane’s speed, position, and orientation are used to help link flux data to fixed points along the flight’s path – so the team can make comparisons between aerial measurements and those made by the ground-based towers – see Photo 9. “One challenge with that is the flux towers are much lower to the ground, and their footprint is much smaller,” said Glenn Wolfe [GSFC—BlueFlux Flight Lead]. “So, we have to be really careful with our airborne observations, to make sure they closely resemble our ground-based measurements.” Part of decoding the airborne data involves overlaying each footprint with detailed maps of different surface properties, such as vegetation cover, soil water depth, or leaf-area index, so the team can constrain the measurements and assign fluxes to specific sources – whether its mangroves, sawgrass, or even water. Photo 9. The BlueFlux airborne science team collects flux measurements from 90m (300ft) above Florida’s mangrove forests. Photo credit: Nathan Marder/NASA’s Goddard Space Flight Center (GSFC) Data Upscaling – Making Daily Flux Predictions from Space The coupling of BlueFlux’s ground-based and airborne data provides the framework for the production of a broader, regional image of GHG flux. “The eddy flux towers give us information about the temporal variability,” said Cheryl Doughty [GSFC]. “And the airborne campaign gives us this great intermediate dataset that allows us to go from individual trees to a much larger area.” Doughty is now using BlueFlux data to train a remote-sensing data product, the prototype of which is called Daily Flux Predictions for South Florida. The product’s underlying model relies on machine learning algorithms and an ensemble modeling technique called random forest regression. It will make flux predictions based on surface reflectance data captured by the Moderate Resolution Imaging Spectroradiometer (MODIS), an instrument that flies on NASA’s polar-orbiting Aqua and Terra satellites – see Figure 4. “We’re really at the mercy of the data that’s out there,” said Doughty. “One of the things we’re trying to produce as part of this project is a daily archive of fluxes, so MODIS is an amazing resource, because it has over 20 years of data at a daily temporal resolution.” This archival flux data will help researchers explain how fluxes change in relation to processes that are directly described by MODIS surface reflectance data, including sea-level rise, land use, water management, and disturbances from hurricanes and fires. Figure 4. Sample of methane flux upscaling, in which MODIS surface reflectance retrievals are used to predict CH4 flux for South Florida at a regional scale [bottom row, left]. The model inputs rely on a composite of MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Radiance (NBAR) measurements from all available MODIS land bands: [top row, left to right]: red (620–670 nm), green (545–565 nm), blue (459–479 nm); [middle row, left to right] near infrared 1, or NIR1 (841–876 nm), NIR2 (1230–1250 nm), shortwave IR 1, or SWIR1 (1628–1652 nm), and SWIR 2 (2105–2155 nm). The Everglades National Park boundary is indicated on each image with a white line. Output of the model is shown [bottom row, left] as well as a comparison between modeled fluxes of MODIS NBAR with Terra and Aqua [bottom row, right]. Credit: GSFC To help validate the model, researchers must reformat flux measurements from the airborne campaign to match the daily temporal resolution and 500m2 (0.3mi2) spatial resolution of MODIS reflectance retrievals. “It’s best practice to meet the data at the coarsest resolution,” said Doughty. “So, we have to take an average of the hourly estimates to match MODIS’ daily scale.” The matching process is slightly more complicated for spatial datasets. BlueFlux’s airborne flux measurements produce roughly 20 data points for each 500 m2 (0.3 mi2) area, the same resolution as a single MODIS pixel. “We’re essentially taking an average of all those CARAFE points to get an estimate that corresponds to one pixel,” said Doughty. This symmetry is critical, allowing the team to test, train, and tune the model using measurements that capture what’s really happening on the ground – ensuring the accuracy of flux measurements generated from satellite data alone. Researchers don’t expect the model to serve as a perfect reconstruction of reality. The heterogenous nature of Florida’s wetland terrain – which consists of a patchwork of sawgrass marshland, mangrove forests, hardwood hammocks, and freshwater swamps – contributes to high degree of variability in CO2 removal rates within and across its distinct regions. The daily flux product accounts for some of this complexity by making hundreds of calculations at a time, each with slightly different parameters based on in-situ measurements. “The goal isn’t to just give people one flux measurement but an estimate of the uncertainty that is so inherent to these wetlands,” explained Doughty. The prototype of the product will be operational by early 2025 and accessible to the public through NASA’s ORNL­ DAAC. Doughty hopes it will help stakeholders and decision makers evaluate policies related to water management, land use, and conservation that might impact critical stocks of blue carbon. From Drainage to Restoration in the Florida Everglades In the late 19th century, land developers were drawn to South Florida, where they hoped the fertile soil and tropical climate could support year-round cultivation of commodities such as exotic fruits, vegetables, and sugar cane. There was just one thing standing in the way – the water. If they could find a way to tame Florida’s wilderness, to drain the wetland of its excess water, Florida would offer Americans a new agricultural frontier. Progress was made incrementally, but the Everglades drainage project idled for more than 50 years as its organizers wrestled with the literal and political morass surrounding South Florida’s wetland topography. It was mother nature’s hand that ultimately accelerated the drainage project. In 1926 and 1928, two large hurricanes tore through the barrier along Lake Okeechobee’s southern shore built to prevent water from spilling onto the newly settled, small-scale farmland just south of the lake. The second of the two storms – 1928’s Okeechobee Hurricane – made landfall in early September and resulted in nearly 3,000 recorded fatalities. In some areas, the torrent of flood water was deep enough that even those who sought refuge from the flood on the roofs of their homes were swept away by the current. The federal government was forced to step in. By 1938, the U.S. Army Corps of Engineers had completed construction of the Hoover *****, adding to a collection of four canals responsible for siphoning water away from Lake Okeechobee’s floodplain and into the Atlantic Ocean. Seasonal flooding was brought under control, but the complete reclamation of South Florida’s wetlands proved more challenging than anticipated. As water levels fell and freshly cleared lands dried out, the high organic content of the soil fueled tremendous peat and muck fires that could ***** for days, spreading through underground seams where water once flowed. In some areas, fires consumed the entire topsoil layer – exposing the limestone substrata to the atmosphere for the first time in thousands of years. The engineers in charge of Florida’s early wetland reclamation projects underestimated the value of the state’s hydrological system and overestimated its capacity to withstand human interference. “Those initial four canals were enough to drain the everglades three times over,” said Fred Sklar [South Florida Water Management District—Everglades System Sciences Director]. “And they still exist, but now there are more than seven million people who rely on them for drinking water and flood control.” Today, much of the Water Management District’s work involves unwinding the damage wrought by earlier drainage efforts. “One thing we’re trying to do is make sure these peat fires never happen again,” said Sklar. But restoring natural water flow to the Everglades ­– which is critical to the region’s ecological health – isn’t an option. Even if drainage could be reversed, it would subject Florida’s residents to the same flood risks that made drainage a priority. Some residents, including members of the Miccosukee and Seminole tribes, live directly alongside or within Everglades wilderness areas, where the risk of flooding is even greater than it is in the state’s highly populated coastal communities. These areas are also out of reach of the Water Management District’s existing infrastructure. It’s not as simple as turning the tap on and off. Photo 10. The Tamiami Trail Canal runs across the Florida Peninsula from west to east, towards a saltwater treatment facility near the Miami River. Construction was completed in 1928, shortly after the first four drainage canals opened. It quickly became apparent that the canal and its adjacent roadway dramatically impede water flow to the Everglades wilderness areas to their south, cutting off the region’s vegetation and wildlife from a critical source of freshwater. New modifications to the canal are currently underway, which aim to introduce a hydrological regime that more closely resembles the pre-drainage system. Photo credit: U.S. National Park Service Florida’s Water Management District works with federal agencies, including the U.S. Army Corps of Engineers, to monitor and govern the flow of Florida’s freshwater. The District has overseen the construction and management of dozens of canals, dikes, levees, dredges, and pumps over the last half-century that offer a higher degree of control over Florida’s complex hydrological network – see Photo 10. “The goal is to restore as much acreage as we can, but we also need to restore it functionally, without degrading the whole system or putting residents at risk,” summarized Sklar. “To do this effectively, we need a detailed understanding of how the hydrology functions and how it influences all of these other systems, such as carbon sequestration.” Since the 1920s, more than half of Florida’s original wetland coverage has been lost. The present system also carries 65% less peat coverage and 77% less stored carbon than it did prior to drainage. As atmospheric CO2 concentrations climb at unprecedented rates, an accompanying rise in sea levels, severe weather, and ocean salinity all present serious threats to Florida’s wetland ecology – see Figure 5. “We’re worried about losing that stored carbon,” said Poulter. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.” Figure 5. A map of the BlueFlux study region, showing mangrove extent (green) and the paths of tropical storms and hurricanes from 2011 to 2021 (red). These storms drive losses in mangrove forest coverage – the result of erosion and wind damage. The inset regions at the top of the image highlight proposed targets for the airborne component of NASA’s BlueFlux Campaign. Figure credit: GSFC Conclusion – The Future of Flux Every few years, the Intergovernmental Panel on Climate Change (IPCC) releases emissions data and budget reports that have important policy implications related to the Paris Agreement’s goal of limiting global warming to between 1.5°C (2.7°F) and 2°C (3.6°F) compared to pre-industrial levels. Refining the accuracy of global carbon budgets is paramount to reaching that goal, and wetland ecosystems – which have been historically under-represented in climate research – are an important part of the equation. Early estimates based on BlueFlux fieldwork deployments and upscaled using MODIS surface reflectance data suggest that wetland CH4 emissions in South Florida offset CO2 removal in the region by about 5% based on a 100-year CH4 warming potential, resulting in a net annual CO2 removal of 31.8 Tg (3.18 million metric tons) per year. This is a small fraction of total CO2 emissions in the U.S. and an even smaller fraction of global emissions. In 2023, an estimated 34,800 Tg (34.8 billion metric tons) of CO2 were released into the atmosphere. But relative to their size, the CO2 removal services provided by tropical wetlands are hardly dismissible. “We’re finding that massive amounts of CO2 are removed and substantial amounts of CH4 are produced, but overall, these ecosystems provide a net climate benefit by removing more greenhouse gases than they produce,” Poulter said. Access to a daily satellite data product also provides researchers with the means to make more regular adjustments to budgets based on how Florida’s mutable landscape is responding to climate disturbances and restoration efforts in real time. With the right resources in hand, the scientists who dedicate their careers to understanding and restoring South Florida’s ecology share a hopeful outlook. “Nature and people can absolutely coexist,” said Meenakshi Chabba [The Everglades Foundation—Ecologist and Resilience Scientist]. “But what we need is good science and good management to reach that goal.” The Everglades Foundation provides scientific evaluation and guidance to the elected officials and governmental institutions responsible for the implementation of the Comprehensive Everglades Restoration Plan (CERP), a federal program approved by Congress in 2000 that outlines a 30-year plan to restore Florida’s wetland ecology. The Foundation sees NASA’s BlueFlux campaign as an important accompaniment to that goal. “The [Daily Flux Predictions for South Florida] data product is incredibly valuable, because it provides us with an indicator of the health of the whole system,” said Steve Davis [The Everglades Foundation—Chief Science Officer]. “We know how valuable the wetlands are, but we need this reliable science from NASA and the BlueFlux Campaign to help translate those benefits into something we can use to reach people as well as policymakers.” Researchers hope the product can inform decisions about the management of Florida’s wetlands, the preservation of which is not only a necessity but – to many – a responsibility. “These impacts are of our own doing,” added Chabba. “So, now it’s incumbent upon us to make these changes and correct the mistakes of the past.” Next, the BlueFlux team is shifting their focus to what they call BlueFlux 2. This stage of the project centers around further analysis of the data collected during fieldwork campaigns and outlines the deployment of the beta version of Daily BlueFlux Predictions for South Florida, which will help generate a more accurate evaluation of flux for the many wetland ecosystems that exist beyond Florida’s borders. “We’re trying to contribute to a better understanding of global carbon markets and inspire further and more ambitious investments in these critical stocks of blue carbon,” said Poulter. “First, we want to scale this work to the Caribbean, where we have these great maps of mangrove distribution but limited data on flux.” An additional BlueFlux fieldwork deployment is slated for 2026, with plans to make flux measurements above sites targeted by the state for upcoming restoration initiatives, such as the Everglades Agricultural Area Environmental Protection District. In the Agricultural Area, construction is underway on a series of reservoirs that will store excess water during wet seasons and provide a reserve source of water for wildlife and residents during dry seasons. As the landscape evolves, BlueFlux will help local officials evaluate how Florida’s wetlands are responding to efforts designed to protect the state’s most precious natural resource – and all those who depend on it. Nathan Marder NASA’s Goddard Space Flight Center/Global Science and Technology Inc. *****@*****.tld Share Details Last Updated Nov 12, 2024 Related Terms Earth Science View the full article
  25. MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become. “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon. Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather. “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx. Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes. The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the ********* Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface. Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf. Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.” Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said. Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts. “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division. Project Lead: Chris Ruf, University of Michigan Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space Share Details Last Updated Nov 12, 2024 Related Terms CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More 22 min read Summary of the Second OMI–TROPOMI Science Team Meeting Article 1 hour ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education Article 6 days ago 2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow Article 1 week ago View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.