SpaceMan
Diamond Member-
Posts
1,464 -
Joined
-
Last visited
Never -
Feedback
0%
Content Type
Profiles
Forums
Downloads
Store
Everything posted by SpaceMan
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar ******* Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s ******* research efforts.NASA/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with ******* patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s ******* Moonshot initiative on Oct. 4. Roundtable discussions centered conversation around the five hazards of human spaceflight: space radiation, isolation and confinement, distance from Earth, gravity, and closed or hostile environments. Many of these hazards have direct correlations to a ******* patient’s lived experience, like the isolation of a hospital room and long-term effects of radiation. During the visit with patients at the UCSF Benioff Children’s Hospital San Francisco, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space. Patients also received a video message from NASA astronauts Suni Williams and Butch Wilmore from the International Space Station, and met with Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, Eugene Tu, director of NASA’s Ames Research Center in California’s Silicon Valley, and other agency leaders. Leadership from NASA and the University of California, San Francisco gathered for an informal luncheon before a collaborative roundtable discussion of research opportunities. From left to right, Alan Ashworth, president of the UCSF Helen Diller Family Comprehensive ******* Center, Eugene Tu, director of NASA’s Ames Research Center in California’s Silicon Valley, David Korsmeyer, deputy director of Ames, Sam Hawgood, chancellor of UCSF, and Vanessa Wyche, director of NASA’s Johnson Space Center in Houston. By connecting the dots between human space research and ******* research, NASA and the University of California hope to open doors to innovative new research opportunities. NASA is working with researchers, institutions, and agencies across the federal government to help cut the nation’s ******* ****** rate by at least 50% in the next 25 years, a goal of the ******* Moonshot Initiative. Learn more about the ******* Moonshot at: [Hidden Content] Share Details Last Updated Oct 09, 2024 Related TermsHuman Research ProgramAmes Research CenterAstronautsGeneralJohnson Space Center Explore More 4 min read Project Engineer Miranda Peters Flips the Script on Neurological Differences Article 16 mins ago 3 min read Artemis I Radiation Measurements Validate Orion Safety for Astronauts Article 2 hours ago 2 min read How Do Astronauts Get in Shape? – New “Ask SME” from NASA eClips The NASA Science Activation program’s NASA eClips project, led by the National Institute of Aerospace… Article 3 hours ago Keep Exploring Discover Related Topics Ames Research Center Johnson Space Center International Space Station Human Research Program View the full article
-
In her six years working with NASA, Miranda Peters has filled a variety of roles. She trained in flight control for the International Space Station, worked as a safety engineer in the station’s program office, and served as a project engineer working on next-generation spacesuit assembly and testing. She has also embraced an unofficial duty: speaking openly and honestly about her neurodivergence. “I used to hide it or avoid talking about it. I used to only see it as an impediment, but now I see how I can also do things or think about things in a unique way because of my disability,” she said. Peters said that when her neurodivergence impacts her ability to do something, she is honest about it and seeks help from her colleagues. “My hope is that when I talk about it openly, I am creating an environment where others with disabilities also feel comfortable being their true selves, in addition to humanizing the disabled community for those who are not a part of it.” Miranda Peters stands inside one of Johnson Space Center’s testing chambers in Houston with an Exploration Extravehicular Mobility Unit (xEMU) in the background.NASA Over time, Peters has also shifted her self-perception. “I’m an anxious person and was made to feel self-conscious about that in the past, but that anxiety also makes me transparent about what I’m doing and where the gaps in my knowledge are, which has earned praise from team leadership,” she said. Similarly, while Peters once saw her sensitivity as a weakness, she learned to appreciate her ability to empathize with and anticipate the needs of others. “That makes me a good mentor and leader,” she said. Learning to filter feedback has been another important lesson. “Advice and criticism are both useful tools, but not all of the time,” she explained. “I found myself tightly holding on to all of the criticism I received. It was easier to determine which advice didn’t work for me.” When Peters stopped to ask herself if she would take advice from the same person who was critiquing her, it became easier to take their feedback “with a pinch of salt.” Miranda Peters (center) with the SxEMU Chamber C testing team.NASA Peters applies these lessons learned as a design verification and test hardware lead within the Spacesuit and Crew Survival Systems Branch at Johnson Space Center in Houston. She currently supports tests of the Portable Life Support System (xPLSS) that will be integrated into the new spacesuits worn by astronauts on future missions to explore the lunar surface. She is responsible for assembling and disassembling test units, making hardware and software updates, and integrating the xPLSS with various components of the spacesuit, known as the xEMU. Peters’ most recent prior position was assembly and integration engineer within the same branch. She had an opportunity to serve as the interim xPLSS hardware lead when a colleague went on leave for several months, and suddenly found herself managing a major project. “We got a lot done in a short amount of time without loss of procedural integrity, even when we encountered unexpected changes in schedule,” she said. “I also used this large amount of lab work as an opportunity to train new hires and interns in assembly processes.” When the colleague returned, Peters was promoted to the newly created role overseeing design verification and testing. “I really love how universal spacesuits are in their ability to excite and draw wonder from across the human spaceflight community and the general public,” she said. “Working on the xEMU project has affirmed for me that human surface mobility is the field that I want to make my career.” That realization inspired Peters to pursue a graduate degree in space architecture from the University of Houston, which she expects to complete in May 2026. Miranda Peters (center) with members of the Portable Life Support System team during an assembly activity in 2021.Miranda Peters Peters looks forward to a future where NASA’s astronaut classes include individuals with different abilities. She encourages agency leaders, contractors, and others to have open conversations about workplace accommodations early in their hiring and performance review processes. “I think if we provide the opportunity to talk about accommodations and how to request them, employees would be more empowered to ask for what they need to be successful,” she said. Educating managers about available accommodations and allocating resources to expand the accessibility of those accommodations would also be helpful. Peters hopes to pass that feeling of empowerment on to the Artemis Generation. “Empowerment to be themselves, to do the hard things, and to not limit themselves,” she said. “We need to take advantage of all the opportunities we can, and not let the ***** of ******** or not being ‘good enough’ stop us from going where we want to.” View the full article
-
In October 1604, a new star appeared in the sky, puzzling astronomers of the day. First observed on Oct. 9, ******* astronomer Johannes Kepler (1571-1630) began his observations on Oct. 17 and tracked the new star for over a year. During that time, it brightened to magnitude -2.5, outshining Jupiter, and for several weeks remained visible in the daytime. Publication of his detailed observations in 1606 led astronomers to call the star Kepler’s Supernova, today formally designated as supernova SN 1604. Astronomers of the day did not know what caused the star’s sudden appearance and eventual disappearance, but the phenomenon helped shape ********* cosmology toward the heliocentric model proposed by Polish astronomer Nicolaus Copernicus half a century earlier. Today, astronomers designate SN 1604 as a Type Ia supernova, resulting from the ********** of a white dwarf star, and use ground-based and space-based telescopes to study its remnants. Left: Portrait of Johannes Kepler by August Köhler. Middle: Kepler’s book about his observations of the 1604 supernova open to the page depicting the location of the new star. Right: Closeup of Kepler’s illustration of the location of the new star, designated N, in the constellation Ophiuchus near the right foot of the serpent-bearer. Italian astronomer Lodovico delle Colombo first observed the supernova in the constellation Ophiuchus on Oct. 9. Kepler, then working in Prague, heard rumors of the new star but did not observe it until Oct. 17. He continued to monitor the star for over a year, inspired by the earlier work of Danish astronomer Tycho Brahe’s observations of a similar phenomenon, the 1572 supernova. The new star quickly brightened to magnitude -2.5, outshining Jupiter, and for three weeks could be seen in the daytime before finally fading into obscurity in March 1606. Kepler could only make ****** eye observations, since Italian astronomer Galileo Galilei didn’t turn his newly invented telescope to the skies for another four years after SN 1604 faded from view. Later in 1606, Kepler summarized his observations in his book De Stella nova in ***** Serpentarii (On the New Star in Ophiuchus’ Foot), published in Prague. SN 1604 is believed to be about 20,000 light years away, near the edge of a dark nebula complex. Kepler and his contemporaries observed not only the last known supernova to occur in the Milky Way Galaxy but also the last supernova visible to the ****** eye until 1987. That one, Supernova 1987A, appeared in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way. A Type Ia supernova results from a white dwarf drawing in material from a nearby red giant star, the additional mass leading to a runaway thermonuclear **********. Astronomers today understand that what Kepler and others believed as the birth of a new star actually represented the violent ****** of a star. Astronomers today classify supernovas according to their characteristics, and SN 1604 belongs to the group known as Type Ia supernovas, typically found in binary star systems composed of a white dwarf and a red giant. The gravitation force of the white dwarf draws in material from its larger less dense companion until it reaches a critical mass, around 1.4 times the mass of our Sun. At that point, a runaway thermonuclear chain reaction begins, causing a release of tremendous amounts of energy, including light, that we see as a sudden brightening of an otherwise dim star. Images of Kepler’s supernova remnants in different portions of the electromagnetic spectrum. Left: X-ray image from the Chandra X-ray Observatory. Middle: Visible image from the Hubble Space Telescope. Right: Infrared image from the Spitzer Space Telescope. Supernova explosions leave remnants behind and those of SN 1604 remain visible today. Ground-based and space-based instruments using different parts of the electromagnetic spectrum study these remnants to gain a better understanding of their origins. The remnants of SN 1604 emit energy most strongly in the radio and X-ray parts of the electromagnetic spectrum. In recent years, astronomers have used Type Ia supernovas to determine the rate of expansion of the universe. Because Type Ia supernovas all occur in stars of about 1.4 solar masses, they give out about the same amount of light. This makes them useful as distance indicators – if one Type Ia supernova is dimmer than another one, it is further away by an amount that astronomers can calculate. Based on this information, astronomers believe that the expansion of the universe is accelerating, possibly caused by the presence of a mysterious substance called dark energy. Events in world history in 1604: January 1 – First performance of William Shakespeare’s play A Midsummer’s Night’s Dream. March 22 – Karl IX begins his rule as King of Sweden. August 5 – Sokolluzade Mehmed Pasha becomes the new Ottoman Grand Vizier in Constantinople. August 18 – England and Spain sign the Treaty of London, ending their 20-year war. September 1 – Sri Guru Granth Sahib, Sikhism’s religious text, is installed at Hamandir Sahib in Amritsar, India. October 4 – Emperor of Ethiopia Za Dengel is ******* in battle with the forces of Za Sellase, who restores his cousin Yaqob to the throne. November 1 – First performance of William Shakespeare’s tragedy Othello. December 29 – A magnitude 8.1 earthquake shakes the Taiwan Strait causing significant damage. Explore More 13 min read 40 Years Ago: STS-41G – A Flight of Many Firsts and Records Article 2 days ago 12 min read 30 Years Ago: STS-68 The Second Space Radar Lab Mission Article 1 week ago 15 min read 55 Years Ago: Celebrations for Apollo 11 Continue as Apollo 12 Prepares to Revisit the Moon Article 3 weeks ago View the full article
-
Hubble Space Telescope Home NASA’s Hubble, New… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus NASA’s Hubble Space Telescope (left) and NASA’s New Horizon’s spacecraft (right) images the planet Uranus. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI) Download this image NASA’s Hubble Space Telescope and New Horizons spacecraft simultaneously set their sights on Uranus recently, allowing scientists to make a direct comparison of the planet from two very different viewpoints. The results inform future plans to study like types of planets around other stars. Astronomers used Uranus as a proxy for similar planets beyond our solar system, known as exoplanets, comparing high-resolution images from Hubble to the more-distant view from New Horizons. This combined perspective will help scientists learn more about what to expect while imaging planets around other stars with future telescopes. “While we expected Uranus to appear differently in each filter of the observations, we found that Uranus was actually dimmer than predicted in the New Horizons data taken from a different viewpoint,” said lead author Samantha Hasler of the Massachusetts Institute of Technology in Cambridge and New Horizons science team collaborator. In this image, two three-dimensional shapes (top) of Uranus are compared to the actual views of the planet from NASA’s Hubble Space Telescope (bottom left) and NASA’s New Horizon’s spacecraft (bottom right). Comparing high-resolution images from Hubble to the smaller view from New Horizons offers a combined perspective that will help researchers learn more about what to expect while imaging planets around other stars with future observatories. NASA, ESA, STScI, Samantha Hasler (MIT), Amy Simon (NASA-GSFC), New Horizons Planetary Science Theme Team; Image Processing: Joseph DePasquale (STScI), Joseph Olmsted (STScI) Download this image Direct imaging of exoplanets is a key technique for learning about their potential habitability, and offers new clues to the origin and formation of our own solar system. Astronomers use both direct imaging and spectroscopy to collect light from the observed planet and compare its brightness at different wavelengths. However, imaging exoplanets is a notoriously difficult process because they’re so far away. Their images are mere pinpoints and so are not as detailed as the close-up views that we have of worlds orbiting our Sun. Researchers can also only directly image exoplanets at “partial phases,” when only a portion of the planet is illuminated by their star as seen from Earth. Uranus was an ideal target as a test for understanding future distant observations of exoplanets by other telescopes for a few reasons. First, many known exoplanets are also gas giants similar in nature. Also, at the time of the observations, New Horizons was on the far side of Uranus, 6.5 billion miles away, allowing its twilight crescent to be studied—something that cannot be done from Earth. At that distance, the New Horizons view of the planet was just several pixels in its ****** camera, called the Multispectral Visible Imaging Camera. On the other hand, Hubble, with its high resolution, and in its low-Earth orbit 1.7 billion miles away from Uranus, was able to see atmospheric features such as clouds and storms on the day side of the gaseous world. “Uranus appears as just a small dot on the New Horizons observations, similar to the dots seen of directly-imaged exoplanets from observatories like Webb or ground-based observatories,” added Hasler. “Hubble provides context for what the atmosphere is doing when it was observed with New Horizons.” The gas giant planets in our solar system have dynamic and variable atmospheres with changing cloud cover. How common is this among exoplanets? By knowing the details of what the clouds on Uranus looked like from Hubble, researchers are able to verify what is interpreted from the New Horizons data. In the case of Uranus, both Hubble and New Horizons saw that the brightness did not vary as the planet rotated, which indicates that the cloud features were not changing with the planet’s rotation. However, the importance of the detection by New Horizons has to do with how the planet reflects light at a different phase than what Hubble, or other observatories on or near Earth, can see. New Horizons showed that exoplanets may be dimmer than predicted at partial and high phase angles, and that the atmosphere reflects light differently at partial phase. NASA has two major upcoming observatories in the works to advance studies of exoplanet atmospheres and potential habitability. “These landmark New Horizons studies of Uranus from a vantage point unobservable by any other means add to the mission’s treasure trove of new scientific knowledge, and have, like many other datasets obtained in the mission, yielded surprising new insights into the worlds of our solar system,” added New Horizons principal investigator Alan Stern of the Southwest Research Institute. This illustration shows NASA’s New Horizons spacecraft’s view of our solar system from deep in the Kuiper Belt. New Horizons is currently at an estimated distance of more than 5 billion miles from Earth. The probe was 6.5 billion miles away from Uranus when it recently observed the planet. In this study, researchers used the gas giant as an exoplanet proxy, comparing high-resolution images from NASA’s Hubble Space Telescope to the smaller view from New Horizons to learn more about what to expect while imaging planets around other stars. NASA, ESA, ********** Nieves (STScI), Ralf Crawford (STScI), Greg Bacon (STScI) Download this image NASA’s upcoming Nancy Grace Roman Space Telescope, set to launch by 2027, will use a coronagraph to block out a star’s light to directly see gas giant exoplanets. NASA’s Habitable Worlds Observatory, in an early planning phase, will be the first telescope designed specifically to search for atmospheric biosignatures on Earth-sized, rocky planets orbiting other stars. “Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing for these future missions,” concluded Hasler. “And that will be critical to our success.” Launched in January 2006, New Horizons made the historic flyby of Pluto and its moons in July 2015, before giving humankind its first close-up look at one of these planetary building block and Kuiper Belt object, Arrokoth, in January 2019. New Horizons is now in its second extended mission, studying distant Kuiper Belt objects, characterizing the outer heliosphere of the Sun, and making important astrophysical observations from its unmatched vantage point in distant regions of the solar system. The Uranus results are being presented this week at the 56th annual meeting of the ********* Astronomical Society Division for Planetary Sciences, in Boise, Idaho. The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (********* Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD *****@*****.tld Hannah Braun, Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contacts: Samantha Hasler Massachusetts Institute of Technology, Cambridge, MA Share Details Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope New Horizons Planetary Science Planetary Science Division Planets The Solar System Uranus Keep Exploring Explore More Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. New Horizons New Horizons was the first spacecraft to explore Pluto and its five moons up close and, later, made the first… Studying the Outer Planets and Moons Hubble Online Activities View the full article
-
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.Credit: NASA NASA’s Orion spacecraft is designed to keep astronauts safe in deep space, protecting them from the unforgiving environment far from Earth. During the uncrewed Artemis I mission, researchers from NASA, along with several collaborators, flew payloads onboard Orion to measure potential radiation exposure to astronauts. Radiation measurements were taken inside Orion by 5,600 passive sensors and 34 active radiation detectors during its 25.5-day mission around the Moon and back, which provided important data on exposure within the Earth’s Van Allen radiation belt. These detailed findings were published in a recent scientific article through a collaborative effort by NASA’s Space Radiation Analysis Group, the DLR (******* Space Center), and ESA (********* Space Agency). The measurements show that while radiation exposure can vary depending on location within Orion, the spacecraft can protect its crew from potentially hazardous radiation levels during lunar missions. Space radiation could pose major risks to long-duration human space flights, and the findings from the Artemis I mission represent a crucial step toward future human exploration beyond low Earth orbit, to the Moon, and eventually to Mars. NASA’s HERA (Hybrid Electronic Radiation Assessor) and Crew Active Dosimeter, which were tested previously on the International Space Station, and ESA’s Active Dosimeter, were among the instruments used to measure radiation inside Orion. HERA’s radiation sensor can warn crew members need to take shelter in the case of a radiation event, such as a solar flare. The Crew Active Dosimeter can collect real-time radiation dose data for astronauts and transmit it back to Earth for monitoring. Radiation measurements were conducted in various areas of the spacecraft, each offering different levels of shielding. This high-resolution image captures the inside of the Orion crew module on flight day one of the Artemis I mission. At left is Commander Moonikin Campos, a purposeful passenger equipped with sensors to collect data that will help scientists and engineers understand the deep-space environment for future Artemis missions. Credit: NASA In addition, the Matroshka AstroRad Radiation Experiment, a collaboration between NASA and DLR, involved radiation sensors placed on and inside two life-sized manikin torsos to simulate the impact of radiation on human tissue. These manikins enabled measurements of radiation doses on various body parts, providing valuable insight into how radiation may affect astronauts traveling to deep space. Two manikins are installed in the passenger seats inside the Artemis I Orion crew module atop the Space Launch System rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Aug. 8, 2022. As part of the Matroshka AstroRad Radiation Experiment (MARE) investigation, the two female manikins – Helga and Zohar – are equipped with radiation detectors, while Zohar also wears a radiation protection vest, to determine the radiation risk on its way to the Moon. Credit: NASA Researchers found that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions. Though the spacecraft’s radiation shielding is effective, the range of exposure can greatly vary based on spacecraft orientation in specific environments. When Orion altered its orientation during an engine ***** of the Interim Cryogenic Propulsion Stage, radiation levels dropped nearly in half due to the highly directional nature of the radiation in the Van Allen belt. “These radiation measurements show that we have an effective strategy for managing radiation risks in the Orion spacecraft. However, key challenges remain, especially for long-duration spaceflights and the protection of astronauts on spacewalks,” said Stuart George, NASA’s lead author on the paper. NASA’s long-term efforts and research in mitigating space radiation risks are ongoing, as radiation measurements on future missions will depend heavily on spacecraft shielding, trajectory, and solar activity. The same radiation measurement hardware flown on Artemis I will support the first crewed Artemis mission around the Moon, Artemis II, to better understand the radiation exposure seen inside Orion and ensure astronaut safety to the Moon and beyond. For more information on NASA’s Artemis campaign, visit: [Hidden Content] View the full article
-
Hubble Space Telescope Home NASA’s Hubble Watches… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 4 Min Read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball Hubble Space Telescope data of Jupiter’s Great Red Spot spanning approximately 90 days. Credits: NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Astronomers have observed Jupiter’s legendary Great Red Spot (GRS), an anticyclone large enough to ******** Earth, for at least 150 years. But there are always new surprises – especially when NASA’s Hubble Space Telescope takes a close-up look at it. Hubble’s new observations of the famous red storm, collected 90 days between December 2023 to March 2024, reveal that the GRS is not as stable as it might look. The recent data show the GRS jiggling like a bowl of gelatin. The combined Hubble images allowed astronomers to assemble a time-lapse movie of the squiggly behavior of the GRS. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This time-lapse movie is assembled from Hubble Space Telescope observations spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun. Astronomers measured the Great Red Spot’s size, shape, brightness, ******, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Video: Joseph DePasquale (STScI) Download this video “While we knew its motion varies slightly in its longitude, we didn’t expect to see the size oscillate. As far as we know, it’s not been identified before,” said Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of the science paper published in The Planetary Science Journal. “This is really the first time we’ve had the proper imaging cadence of the GRS. With Hubble’s high resolution we can say that the GRS is definitively squeezing in and out at the same time as it moves faster and slower. That was very unexpected, and at present there are no hydrodynamic explanations.” Hubble monitors Jupiter and the other outer solar system planets every year through the Outer Planet Atmospheres Legacy program (OPAL) led by Simon, but these observations were from a program dedicated to the GRS. Understanding the mechanisms of the largest storms in the solar system puts the theory of hurricanes on Earth into a broader cosmic context, which might be applied to better understanding the meteorology on planets around other stars. Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, ******, and vorticity over one full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Download this image Simon’s team used Hubble to zoom in on the GRS for a detailed look at its size, shape, and any subtle ****** changes. “When we look closely, we see a lot of things are changing from day to day,” said Simon. This includes ultraviolet-light observations showing that the distinct core of the storm gets brightest when the GRS is at its largest size in its oscillation cycle. This indicates less haze absorption in the upper atmosphere. “As it accelerates and decelerates, the GRS is pushing against the windy jet streams to the north and south of it,” said co-investigator Mike Wong of the University of California at Berkeley. “It’s similar to a sandwich where the slices of bread are forced to bulge out when there’s too much filling in the middle.” Wong contrasted this to Neptune, where dark spots can drift wildly in latitude without strong jet streams to hold them in place. Jupiter’s Great Red Spot has been held at a southern latitude, trapped between the jet streams, for the extent of Earth-bound telescopic observations. Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, ******, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. The observation is part of the observing programs led by Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA, ESA, STScI, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Download this image The team has continued watching the GRS shrink since the OPAL program began 10 years ago. They predict it will keep shrinking before taking on a stable, less-elongated, shape. “Right now it’s over-filling its latitude band relative to the wind field. Once it shrinks inside that band the winds will really be holding it in place,” said Simon. The team predicts that the GRS will probably stabilize in size, but for now Hubble only observed it for one oscillation cycle. The researchers hope that in the future other high-resolution images from Hubble might identify other Jovian parameters that indicate the underlying cause of the oscillation. The results are being presented at the 56th annual meeting of the ********* Astronomical Society Division for Planetary Sciences, in Boise, Idaho. Jupiter’s iconic Great Red Spot, a storm larger than Earth, has fascinated astronomers for over 150 years. But thanks to NASA’s Hubble Space Telescope, we’re now seeing this legendary storm in a whole new light. Recent observations show that the Great Red Spot is wobbling and fluctuating in size. NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (********* Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Learn More Hubble Shows Winds in Jupiter’s Great Red Spot Are Speeding Up Telescopes and Spacecraft Join Forces to Probe Deep into Jupiter’s Atmosphere Hubble’s Grand Tour of the Outer Solar System Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD *****@*****.tld Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contacts: Amy Simon NASA Goddard Space Flight Center, Greenbelt, MD Michael H. Wong University of California, Berkeley, Berkeley, CA Share Details Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Jupiter Missions Planetary Science Planets The Solar System Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Studying the Outer Planets and Moons Hubble Focus: Our Amazing Solar System Studying the cosmos for over a quarter century, the Hubble Space Telescope has made more than a million observations and… Hubble Posters View the full article
-
4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit. During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight ********* football fields away. The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before. Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery. “Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second. The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond. “It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and ********** at every level.” NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission. NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation program office within the Space Operations Mission Directorate at NASA Headquarters in Washington. About the AuthorKorine PowersSenior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more. Share Details Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauer*****@*****.tldLocationGoddard Space Flight Center Related TermsSpace Communications TechnologyCommunicating and Navigating with MissionsGoddard Space Flight CenterSpace Communications & Navigation ProgramSpace Operations Mission DirectorateTechnologyTechnology Demonstration View the full article
-
Learn Home How Do Astronauts Get in… Astronauts Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read How Do Astronauts Get in Shape? – New “Ask SME” from NASA eClips The NASA Science Activation program’s NASA eClips project, led by the National Institute of Aerospace (NIA), aims to increase Science, Technology, Engineering, & Mathematics (STEM) literacy and inspire the next generation of engineers and scientists by providing effective web-based, standards-aligned, in-school and out-of-school learning and teaching resources through the lens of NASA. As a part of this work, NASA eClips professionally produces the Ask SME: Close-up With a NASA Subject Matter Expert video series to capture a glimpse of NASA SME’s personal interests and career journeys. Each video can be used to spark student interest and broaden their ideas of who the Science, Technology, Engineering, and Mathematics (STEM) workforce might include (everyone!) and the kinds of work they do. On September 19, 2024, NASA eClips released the most recent video in the Ask SME series, featuring Corey Twine from NASA’s Johnson Space Center. Twine is an Astronaut Strength and Conditioning Specialist who works with astronauts to keep them physically fit for work on Earth and while they are in space. He shares insights about how he helps the astronauts and what inspired him to pursue this career. Watch the Video NASA eClips is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content] SME Corey Twine, Astronaut Strength & Conditioning Specialist Share Details Last Updated Oct 09, 2024 Editor NASA Science Editorial Team Location Johnson Space Center Related Terms Astronauts For Educators People of Johnson Science Activation Explore More 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together Article 23 hours ago 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration Article 2 days ago 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A recent NASA-funded study quantified higher levels of fine particulate air pollution near Southern California warehouses, a result of emissions from diesel trucks that transport goods to and from such facilities. Inhalation of these tiny particles can cause serious health problems.Adobe Stock/Matt Gush Satellite-based data offers a broad view of particulate air pollution patterns across a major West Coast e-commerce hub. As goods of all shapes and sizes journey from factory to doorstep, chances are they’ve stopped at a warehouse along the way — likely several of them. The sprawling structures are waypoints in the logistics networks that make e-commerce possible. Yet the convenience comes with tradeoffs, as illustrated in a recent NASA-funded study. Published in the journal GeoHealth, the research analyzes patterns of particulate pollution in Southern California and found that ZIP codes with more or larger warehouses had higher levels of contaminants over time than those with fewer or smaller warehouses. Researchers focused on particulate pollution, choosing Southern California because it is a major distribution hub for goods: Its ports handle 40% of cargo containers entering the country. The buildings themselves are not the major particulate sources. Rather, it’s the diesel trucks that pick up and drop off goods, emitting exhaust containing toxic particles called PM2.5. At 2.5 micrometers or less, these pollutants can be inhaled into the lungs and absorbed into the bloodstream. Although atmospheric concentrations are typically so small they’re measured in millionths of a gram per cubic meter, the authors caution that there’s no safe exposure level for PM2.5. “Any increase in concentration causes some health damage,” said co-author Yang Liu, an environmental health researcher at Emory University in Atlanta. “But if you can curb pollution, there will be a measurable health benefit.” A data visualization shows the average concentration of PM2.5 particulate pollution in the Los Angeles region from 2000 to 2018, along with the locations of nearly 11,000 warehouses. Darker red indicates higher concentration of these toxic particles; small ****** circles represent warehouse locations.NASA Earth Observatory Growing Air Quality Research Particulate pollution has been linked to respiratory and cardiovascular *********, some cancers, and adverse birth outcomes, including ********** birth and low infant birth weight. The new study is part of a broader effort funded by the NASA Health and Air Quality Applied Sciences Team to use satellite data to understand how air pollution disproportionately affects underserved communities. As the e-commerce ***** of recent decades has spurred warehouse construction, pollution in nearby neighborhoods has become a growing area for research. New structures have often sprouted on relatively inexpensive land, which tends to be home to low-income or ********* populations who bear the brunt of the poor air quality, Liu said. Another recent NASA-funded study analyzed satellite-derived nitrogen dioxide (NO2) measurements around 150,000 ******* States warehouses. It found that concentrations of the gas, which is a diesel byproduct and respiratory irritant, were about 20% higher near warehouses. Distribution Hub For the GeoHealth paper, scientists drew on previously generated datasets of PM2.5 from 2000 to 2018 and elemental carbon, a type of PM2.5 in diesel emissions, from 2000 to 2019. The data came from models based on satellite observations, including some from NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) instruments. The researchers also mined a real estate database for the square footage as well as the number of loading docks and parking spaces at nearly 11,000 warehouses across portions of Los Angeles, Riverside, and San Bernardino counties, and all of Orange County. They found that warehouse capacity correlated with pollution. ZIP codes in the 75th percentile of warehouse square footage had 0.16 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile. Similarly, ZIP codes in the 75th percentile of number of loading docks had 0.10 micrograms per cubic meter more PM2.5 and 0.014 micrograms per cubic meter more elemental carbon than those in the 25th percentile. And ZIP codes in the 75th percentile of truck parking spaces had 0.21 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile. “We found that warehouses are associated with PM2.5 and elemental carbon,” said lead author Binyu Yang, an Emory environmental health doctoral student. Although particulate pollution fell from 2000 to 2019 due to stricter emissions standards, the concentrations in ZIP codes with warehouses remained consistently higher than for other areas. Researchers also found that the gaps widened in the holiday shopping season, up to 4 micrograms per cubic meter — “a significant difference,” Liu said. Satellites Provide Big Picture Satellite observations, the researchers said, were essential because they provided a continuous map of pollution, including pockets not covered by ground-based instruments. It’s the same motivation behind NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission, which launched in April 2023 and measures air pollution hourly during daylight over North America. The release of TEMPO’s first maps showed higher concentrations of NO2 around cities and highways. Meanwhile, NASA and the Italian Space Agency are collaborating to launch the MAIA (Multi-Angle Imager for Aerosols) in 2026. It will be the first NASA satellite mission whose primary goal is to study health effects of particulate pollution while distinguishing between PM2.5 types. “This mission will help air quality managers and policymakers conceive more targeted pollution strategies,” said Sina Hasheminassab, a co-author and science systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. Hasheminassab, like Liu, is a member of the MAIA science team. News Media Contacts Andrew Wang / Jane J. Lee Jet Propulsion Laboratory, Pasadena, Calif. 626-379-6874 / 818-354-0307 *****@*****.tld / *****@*****.tld 2024-134 Share Details Last Updated Oct 09, 2024 Related TermsEarthEarth ScienceEarth Science DivisionJet Propulsion LaboratoryMAIA (Multi-Angle Imager for Aerosols) Explore More 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms,… Article 23 hours ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space Article 23 hours ago 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian… Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
X-ray: NASA/CXC/Queen’s Univ. Belfast/M. Nicholl et al.; Optical/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Image Processing: NASA/CXC/SAO/N. Wolk NASA’s Chandra X-ray Observatory and other telescopes have identified a supermassive ****** ***** that has torn apart one star and is now using that stellar wreckage to pummel another star or smaller ****** *****, as described in our latest press release. This research helps connect two cosmic mysteries and provides information about the environment around some of the ******* types of ****** holes. This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive ****** ***** (depicted on the right) tore apart a star through intense tidal forces. Over the course of a few years, this disk expanded outward until it intersected with another object — either a star or a small ****** ***** — that is also in orbit around the giant ****** *****. Each time this object crashes into the disk, it sends out a burst of X-rays detected by Chandra. The inset shows Chandra data (purple) and an optical image of the source from Pan-STARRS (red, green, and blue). In 2019, an optical telescope in California noticed a burst of light that astronomers later categorized as a “tidal disruption event”, or TDE. These are cases where ****** holes tear stars apart if they get too close through their powerful tidal forces. Astronomers gave this TDE the name of AT2019qiz. Meanwhile, scientists were also tracking instances of another type of cosmic phenomena occasionally observed across the Universe. These were brief and regular bursts of X-rays that were near supermassive ****** holes. Astronomers named these events “quasi-periodic eruptions,” or QPEs. This latest study gives scientists evidence that TDEs and QPEs are likely connected. The researchers think that QPEs arise when an object smashes into the disk left behind after the TDE. While there may be other explanations, the authors of the study propose this is the source of at least some QPEs. In 2023, astronomers used both Chandra and Hubble to simultaneously study the debris left behind after the tidal disruption had ended. The Chandra data were obtained during three different observations, each separated by about 4 to 5 hours. The total exposure of about 14 hours of Chandra time revealed only a weak signal in the first and last chunk, but a very strong signal in the middle observation. From there, the researchers used NASA’s Neutron Star Interior Composition Explorer (NICER) to look frequently at AT2019qiz for repeated X-ray bursts. The NICER data showed that AT2019qiz erupts roughly every 48 hours. Observations from NASA’s Neil Gehrels Swift Observatory and India’s AstroSat telescope cemented the finding. The ultraviolet data from Hubble, obtained at the same time as the Chandra observations, allowed the scientists to determine the size of the disk around the supermassive ****** *****. They found that the disk had become large enough that if any object was orbiting the ****** ***** and took about a week or less to complete an orbit, it would collide with the disk and cause eruptions. This result has implications for searching for more quasi-periodic eruptions associated with tidal disruptions. Finding more of these would allow astronomers to measure the prevalence and distances of objects in close orbits around supermassive ****** holes. Some of these may be excellent targets for the planned future gravitational wave observatories. The paper describing these results appears in the October 9, 2024 issue of the journal Nature. The first author of the paper is Matt Nicholl (Queen’s University Belfast in Ireland) and the full list of authors can be found in the paper, which is available online at: [Hidden Content] NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. Learn more about the Chandra X-ray Observatory and its mission here: [Hidden Content] [Hidden Content] Visual Description This release features an artist’s rendering that illustrates the destructive power of a supermassive ****** *****. The digital image depicts a disk of stellar material surrounding one such ****** *****. At its outer edge a neighboring star is colliding with and flying through the disk. The ****** ***** sits halfway down our right edge of the vertical image. It resembles a jet ****** semicircle with a domed cap of pale blue light. The bottom half of the circular ****** ***** is hidden behind the disk of stellar material. In this illustration, the disk is viewed edge on. It resembles a band of swirling yellow, orange, and red gas, cutting diagonally from our middle right toward our lower left. Near our lower left, the outer edge of the stellar debris disk overlaps with a bright blue sphere surrounded by luminous white swirls. This sphere represents a neighboring star crashing through the disk. The stellar disk is the wreckage of a destroyed star. An electric blue and white wave shows the hottest gas in the disk. As the neighboring star crashes through the disk it leaves behind a trail of gas depicted as streaks of fine mist. Bursts of X-rays are released and are detected by Chandra. Superimposed in the upper left corner of the illustration is an inset box showing a close up image of the source in X-ray and optical light. X-ray light is shown as purple and optical light is white and beige. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 *****@*****.tld Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 lane.e*****@*****.tld View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This video shows IPEx in the digital simulation environment.Credit: Johns Hopkins APL/Steve Gribben/Beverly Jensen Space is hard, but it’s not all hardware. The new Lunar Autonomy Challenge invites teams of students from U.S. colleges and universities to test their software development skills. Working entirely in virtual simulations of the Moon’s surface, teams will develop an autonomous agent using software that can accomplish pre-defined tasks without help from humans. These agents will be used to navigate a digital twin of NASA’s ISRU Pilot Excavator (IPEx) and map specified locations in the digital environment. The IPEx is an autonomous mobility ****** engineered to efficiently collect and transport lunar regolith, the loose rocky material on the Moon’s surface. Autonomous systems allow spacecraft, rovers, and robots to operate without relying on constant contact with astronauts or mission control. Before hardware is trusted to operate independently on location, which for Artemis missions includes the Moon, it must be tested virtually. High-fidelity virtual simulations allow NASA to anticipate and improve how systems, both software and hardware, will function in the physical world. Testing in virtual simulations also allows technologists to explore different mission scenarios, observe potential outcomes, and reduce risks. In the Lunar Autonomy Challenge, students will develop their knowledge of autonomous systems by working with the same simulation tools created in-house by Caterpillar Inc. of Irving, Texas, over decades of research and development. Teams will need to utilize the IPEx digital twin’s cameras and orientation sensors to accurately map surface elevation and identify obstacles. Like with real lunar missions, teams must also manage their energy usage and consider the Moon’s harsh terrain and low-light conditions. Through the competition, participants will learn more about autonomous robotic operation, surface mapping, localization, orientation, path planning, and hazard detection. Eligibility Teams must be comprised of at least four undergraduate and/or graduate students and a faculty advisor at a U.S. college or university. Challenge Timeline & Structure The challenge will take place between November 2024 and May 2025 and will include both a qualifying round and a final round. Interested teams must apply by Thursday, Nov. 7. Round 1: Selected teams will develop and train their agent using provided virtual environments. Teams will have three opportunities to submit their agent to run in a qualification environment. For each submission, their agent will be scored based on performance. The top scoring teams will be invited to continue. Round 2: Teams will work to further refine the agents. Teams will have multiple opportunities in total to submit their agents to the competition environment. The top three teams will be named challenge winners. Challenge Guidelines Interested teams should carefully review the Challenge Guidelines and the Lunar Autonomy Challenge site for more details, including proposal requirements, FAQs, and additional technical guidance. Prizes The top three highest-scoring teams on the leaderboard in the finals will be awarded cash prizes: First Place: $10,000 Second Place: $5,000 Third Place: $3,000 Application Submissions Applications must be submitted to NASA STEM Gateway by Nov. 7, 2024. Learn more about the challenge: [Hidden Content] The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. APL is managing the challenge for NASA. NASA’s ISRU Pilot Excavator (IPEx) during a flight-like demonstration at NASA’s Kennedy Space Center’s Swamp Works testing facility. Credit: NASA Authored by: Stephanie Yeldell, Education Integration Lead Space Technology Mission Directorate NASA Headquarters, Washington, DC Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate NASA’s Lunar Surface Innovation Initiative ISRU Pilot Excavator Get Involved View the full article
-
NASA astronaut Jessica Meir conducts cardiac research using tissue chip platforms in the Life Sciences Glovebox aboard space station in March of 2022.NASA The International Space Station offers a unique microgravity environment where cells outside the human body behave similarly to how they do inside the human body. Tissue chips are small devices containing living cells that mimic complex functions of specific human tissues and organs. Researchers can run experiments using tissue chips aboard space station to understand ******** progression and provide faster and safer alternatives for preparing medicine for clinical trials. Researchers placed engineered heart tissues on tissue chips sent to study how microgravity impacts cardiac functions in space. Data collected by the chips showed these heart tissues experienced impaired contractions, subcellular structural changes, and increased stress, which can lead to tissue damage and ********. Previous studies conducted on human subjects have displayed similar outcomes. In the future, engineered heart tissues could accurately model the effects of spaceflight on cardiac function. Another investigation used muscle-on-a-chip technology to evaluate whether engineered muscle tissues can mimic the characteristics of reduced muscle regeneration in microgravity. Researchers found that engineered muscle-on-a-chip platforms are viable for studying muscle-related bioprocesses in space. In addition, samples treated with drugs known to stimulate muscle regeneration showed partial prevention of the effects of microgravity. These results demonstrate that muscle-on-chip can also be used to study and identify drugs that may prevent muscle decline in space and age-related muscle decline on Earth. NASA astronaut Megan McArthur works on the Cardinal Muscle investigation in the Life Sciences Glovebox aboard the space station in August of 2021.NASA Keep Exploring Discover More Topics From NASA Benefits to Humanity Humans In Space International Space Station Space Station Research and Technology View the full article
-
Engineered heart tissues in space showed impairments that led to increased arrhythmias and loss of muscle strength, changes similar to cardiac aging. This finding suggests that the engineered tissues, essentially an automated heart-on-a-chip platform, can be used to study cardiac issues in space and aging-related cardiovascular ******** on Earth. Microgravity exposure is known to cause changes in cardiovascular function similar to those seen with aging on Earth. Engineered Heart Tissues assessed these changes using 3D cultured cardiac muscle tissue. The 3D cultures, grown with special scaffolds and derived from human cells, are better at reproducing the behavior of actual tissues than previous models. Results could support development of countermeasures for crew members on future long-duration space missions and development of drugs to treat cardiac ********* on Earth. A crew member conducts a media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA A space-based and an airborne imaging spectrometer together make it possible to attribute the source of methane and carbon dioxide plumes to specific sectors, such as oil and gas or agriculture. Methane and carbon dioxide emissions are primary drivers of human-caused climate change. This finding could improve greenhouse gas budget and inform mitigation strategies. The space station’s Earth Surface Mineral Dust Source Investigation (EMIT) instrument was designed to determine the type and distribution of minerals in the dust of Earth’s arid regions, but researchers found that EMIT data also can identify specific sources of methane and carbon dioxide emissions. The space-based instrument can identify emissions over large areas and provide repeat observations that reduce uncertainty. The Airborne Visible/Infrared Imaging Spectrometer-3, a NASA Jet Propulsion Laboratory instrument, can quantify smaller emissions sources. Combining these observations provides more information on emission sources. A cluster of methane plumes detected by the Earth Surface Mineral Dust Source Investigation over approximately 150 square miles.NASA Even short periods of higher relative humidity can increase growth of fungi in spacecraft dust and change the diversity of species present. This finding suggests that moisture conditions can predict changes in fungal growth and composition in spacecraft and space habitats, helping to protect astronaut health and structure integrity. The space station contains a unique community of microbes, including many that reside in dust, much like in indoor environments on Earth. Aerosol Sampler collected airborne particles in the station’s cabin air, including dust, for examination on the ground. There are many potential sources of daily elevated moisture conditions on the space station and scientists need to understand how this affects the fungal and bacterial communities in spacecraft dust. The model described in the paper also could assess how other environmental factors such as microgravity and elevated carbon dioxide affect these microbes. An Aerosol Sampler collection device aboard the International Space Station. NASAView the full article
-
NASA/Bill Ingalls NASA Administrator Bill Nelson and Kirk Johnson, Sant Director of the Smithsonian’s National Museum of Natural History in Washington, preview the agency’s new Earth Information Center exhibit on Monday, Oct. 8, 2024. This new exhibit is the Earth Information Center’s second physical location. The exhibit at the Smithsonian includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8, and will remain on display through 2028. Image Credit: NASA/Bill Ingalls View the full article
-
Learn Home Connected Learning Ecosystems:… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms, 4-H afterschool clubs, outdoor education centers, and more) gathered in Orono, Maine for the Learning Ecosystems Northeast (LENE) biannual Connect, Reflect, & Plan Connected Learning Ecosystems (CLEs) Gathering. These gatherings are meant to foster meaningful connections and collaborations and shared knowledge and confidence building amongst educators within the LENE network. NASA Science Activation’s Learning Ecosystems Northeast (LENE) is a network of education partners across the Northeastern ******* States, led by the Gulf of Maine Research Institute. These partners are dedicated to creating and linking communities of in and out of school educators, Connected Learning Ecosystems (CLEs), who are committed to empowering the next generation of climate stewards. The focus of this gathering was to provide educators the time, experiences, connections, and space to explore ways they can prepare the youth and communities they work with to build resilience in the face of climate change. Educators participated in sessions around local asset mapping, climate mental health, positive youth development, building STEM skills through games and fieldwork, and planning forward around coastal flooding and sea level rise. Each session was followed by time to debrief, reflect, and plan both in their regional CLEs as well as with statewide partners. The value of NASA assets and connection to local issues was woven throughout many experiences during this gathering. LENE’s CLE Resource Drive has a growing list of phenomena-based NASA assets that has been curated based on the interests of their network over time. The Global Learning and Observations to Benefit the Environment (GLOBE) program’s GLOBE Observer tree height app was part of the Ash Protection community science protocol and many NASA assets enhance the educator-guided planning forward experience guide that youth practice the difficult, real-life conversations about the consequences of sea level rise as they think about ways they can plan for a resilient future in the face of rising seas and coastal flooding. Sara King from the Rural Aspirations Project (Hancock/Midcoast CLE) had this to say: “Before I first joined the CLE, I viewed STEM professionals to be separate from myself for the most part because I did not feel very confident in my abilities in all parts of STEM. I feel more comfortable with data and technology, engineering, and science practices now.” One educator said that their highlight from the gathering was, “[o]pportunities to meet with other teachers and educators and librarians to share ideas about how we can pool our resources and reach more students.” These educators left with draft learning projects ready for refinement and review, renewed dedication and motivation for the school year, and new perspectives to lead them into continued conversations and partnership with their CLE peers as they meet throughout the year. Learn more about Learning Ecosystem Northeast’s efforts to empower the next generation of environmental stewards at [Hidden Content]. The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content] The August 2024 Connect, Reflect & Plan Connected Learning Ecosystem Gathering crew (educators and project partners from across Maine and even one California partner). Share Details Last Updated Oct 08, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Opportunities For Educators to Get Involved Science Activation Explore More 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration Article 1 day ago 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute Article 4 days ago 2 min read Culturally Inclusive Planetary Engagement in Colorado Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
Throughout the life cycles of missions, Goddard engineer Noosha Haghani has championed problem-solving and decision-making to get to flight-ready projects. Name: Noosha Haghani Title: Plankton Aerosol Clouds and Ecosystem (PACE) Deputy Mission Systems Engineer Formal Job Classification: Electrical engineer Organization: Engineering and Technology Directorate, Mission Systems Engineering Branch (Code 599) Noosha Haghani is a systems engineer for the Plankton Aerosol Clouds and Ecosystem (PACE) mission at NASA’s Goddard Space Flight Center in Greenbelt, Md. Credit: NASA What do you do and what is most interesting about your role here at Goddard? As the PACE deputy mission systems engineer, we solve problems every day, all day long. An advantage I have is that I have been on this project from the beginning. Why did you become an engineer? What is your educational background? I was always very good at math and science. Both of my parents are engineers. I loved building with Legos and solving puzzles. Becoming an engineer was a natural progression for me. I have a BS in electrical engineering and a master’s in reliability engineering from the University of Maryland, College Park. I had completed all my course work for my Ph.D. as well but never finished due to family obligations. How did you come to Goddard? As a freshman in college, I interned at Goddard. After graduation, I worked in industry for a few years. In 2002, I returned to Goddard because I realized that what we do at Goddard is so much more unique and exciting to me. My mother also works at Goddard as a software engineer, so I am a second-generation Goddard employee. Early on in my career, my mother and I met for lunch occasionally. Now I am just too busy to even schedule lunch. Describe the advantages you have in understanding a system which you have worked on from the original design through build and testing? I came to the PACE project as the architect of an avionics system called MUSTANG, a set of hardware electronics that performs the function of the avionics of the mission including command and data handling, power, attitude control, and more. As the MUSTANG lead, I proposed an architecture for the PACE spacecraft which the PACE manager accepted, so MUSTANG is the core architecture for the PACE spacecraft. I led the team in building the initial hardware and then moved into my current systems engineering role. Knowing the history of a project is an advantage in that it teaches me how the system works. Understanding the rationale of the decision making we made over the years helps me to better appreciate why we built the system way we did. How would you describe your problem-solving techniques? A problem always manifests as some incorrect reading or some ******** in a test, which I refer to as evidence of the problem. Problem solving is basically looking at the evidence and figuring out what is causing the problem. You go through certain paths to determine if your theory matches the evidence. It requires a certain level of understanding of the system we have built. There are many components to the observatory including hardware and software that could be implicated. We compartmentalize the problem and try to figure out the root cause systematically. Sometimes we must do more testing to get the problem to recreate itself and provide more evidence. As a team lead, how do you create and assign an investigation plan? As a leader, I divide up the responsibilities of the troubleshooting investigation. We are a very large team. Each individual has different roles and responsibilities. I am the second-highest ranking technical authority for the mission, so I can be leading several groups of people on any given day, depending on the issue. The evidence presented to us for the problem will usually implicate a few subsystems. We pull in the leads for these subsystems and associated personnel and we discuss the problem. We brainstorm. We decide on investigation and mitigation strategies. We then ask the Integration and Test team to help carry out our investigation plan. As a systems engineer, how do you lead individuals who do not report to you or through your chain of command? I am responsible for the technical integrity of the mission. As a systems engineer, these individuals do not work for me. They themselves answer to a line manager who is not in my chain of command. I lead them through influencing them. I use leadership personality and mutual respect to guide the team and convince them that the method we have chosen to solve the problem is the best method. Because I have a long history with the project, and was with this system from the drawing board, I generally understand how the system works. This helps me guide the team to finding the root cause of any problem. How do you lead your team to reach consensus? Everything is a team effort. We would be no where without the team. I want to give full credit to all the teams. You must respect members of your team, and each team member must respect you as a leader. I first try to gather and learn as much as possible about the work, what it takes to do the work, understanding the technical aspects of the work and basically understanding the technical requirements of the hardware. I know a little about all the subsystems, but I rely on my subsystem team leads who are the subject matter experts. The decision on how to build the system falls on the Systems Team. The subject matter experts provide several options and define risks associated with each. We then make a decision based on the best technical solution for the project that falls within the cost/schedule and risk posture. If my subject matter experts and I do not agree, we go back and forth and work together as a team to come to a consensus on how to proceed. Often we all ask many questions to help guide out path. The team is built on mutual respect and good communication. When we finally reach a decision, almost everyone agrees because of our collaboration, negotiation and sometimes compromise. What is your favorite saying? Better is the ****** of good enough. You must balance perfectionism with reality. How do you balance perfectionism with reality to make a decision? Goddard has a lot of perfectionists. I am not a perfectionist, but I have high expectations. Goddard has a lot of conservatism, but conservatism alone will not bring a project to fruition. There is a level of idealism in design that says that you can always improve on a design. Perfection is idealistic. You can analyze something on paper forever. Ultimately, even though I am responsible for the technical aspects only, we still as a mission must maintain cost and schedule. We could improve a design forever but that would take time and money away from other projects. We need to know when we have built something that is good enough, although maybe not perfect. In the end, something on paper is great, but building and testing hardware is fundamental in order to proceed. Occasionally the decisions we make take some calculated risk. We do not always have all the facts and furthermore we do not always have the time to wait for all the facts. We must at some point make a decision based on the data we have. Ultimately a team lead has to make a judgement call. The answer is not in doing bare minimum or cutting corners to get the job done, but rather realizing what level of effort is the right amount to move forward. Why is the ability to make a decision one of your best leadership qualities? There is a certain level of skill in being able to make a decision. If you do not make a decision, at some point that inability to make a decision becomes a decision. You have lost time and nothing gets built. My team knows that if they come to me, I will give them a path forward to ********. No one likes to be stuck in limbo, running in circles. A lot of people in a project want direction so that they can go forward and implement that decision. The systems team must be able to make decisions so that the team can end up with a finished, launchable project. One of my main jobs is to access risk. Is it risky to move on? Or do I need to investigate further? We have a day-by-day risk assessment decision making process which decides whether or not we will move on with the activities of that day. As an informal mentor, what is the most important advice you give? Do not give up. Everything will eventually all click together. What do you like most about your job? I love problem solving. I thrive in organized chaos. Every day we push forward, complete tasks. Every day is a reward because we are progressing towards our launch date. Who inspires you? The team inspires me. They make me want to come to work every day and do a little bit better. My job is very stressful. I work a lot of hours. What motivates me to continue is that there are other people doing the same thing, they are amazing. I respect each of them so much. What do you do for fun? I like to go to the gym and I love watching my son play sports. I enjoy travel and I love getting immersed in a city of a different country. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Oct 08, 2024 EditorMadison OlsonContactRob Garner*****@*****.tldLocationGoddard Space Flight Center Related TermsPeople of GoddardEarthGoddard Space Flight CenterPACE (Plankton, Aerosol, Cloud, Ocean Ecosystem)People of NASA Explore More 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 7 days ago 8 min read Julie Rivera Pérez Bridges Business, STEM to ‘Make the Magic Happen’ Article 2 weeks ago 5 min read Rob Gutro: Clear Science in the Forecast Article 3 weeks ago View the full article
-
Illustration of logistics elements on the lunar surface. NASA NASA is asking U.S. industry to submit innovative architecture solutions that could help the agency land and move cargo on the lunar surfaced during future Artemis missions. Released in September, the agency’s request for proposal also supports NASA’s broader Moon to Mars Objectives. Previously, NASA published two white papers outlining lunar logistics and mobility gaps as part of its Moon to Mars architecture development effort that augmented an earlier white paper on logistics considerations. The current ask, Lunar Logistics and Mobility Studies, expects proposing companies to consider these publications, which describe NASA’s future needs for logistics and mobility. “NASA relies on collaborations from diverse partners to develop its exploration architecture,” said Nujoud Merancy, deputy associate administrator, strategy and architecture in the Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “Studies like this allow the agency to leverage the incredible expertise in the commercial aerospace community.” Lunar Logistics Drivers, Needs Logistics items, including food, water, air, and spare parts, comprise a relatively large portion of the cargo NASA expects to need to move around on the Moon, including at the lunar South Pole where the agency plans to send crew in the future. The Lunar Logistics Drivers and Needs white paper outlines the importance of accurately predicting logistics resupply needs, as they can heavily influence the overall architecture and design of exploration missions. As the agency progresses into more complex lunar missions, NASA will require more and more lunar logistics as the agency increases mission frequency and duration. This current proposal seeks industry studies that could help inform NASA’s approach to this growing need. Lunar Mobility Drivers, Needs The white paper discusses the transportation of landed cargo and exploration assets from where they are delivered to where they are used, such as to locations with ideal lighting, away from ascent vehicle landing sites, or near other assets. These distances can range from yards to miles away from landing locations, and the ability to move around landing sites easily and quickly are key to exploring the lunar surface efficiently. NASA’s current planned lunar mobility elements, such as the Lunar Terrain Vehicle and Pressurized Rover, have a capability limit of about 1,760 pounds (800 kilograms) and will primarily be used to transport astronauts around the lunar surface. However, future missions could include a need to move cargo totaling around 4,400 to 13,000 pounds (2,000 to 6,000 kg). To meet this demand, NASA must develop new mobility capabilities with its partners. Lunar Surface Cargo The Lunar Surface Cargo white paper characterizes lunar surface cargo delivery needs, compares those needs with current cargo lander capabilities, and outlines considerations for fulfilling this capability gap. While cargo delivery capabilities currently included in the Moon to Mars architecture — like CLPS (Commercial Lunar Payload Services) and human-class delivery landers — can meet near-term needs, there are substantial gaps for future needs. Access to a diverse fleet of cargo landers would empower a larger lunar exploration footprint. A combination of international partnerships and U.S. industry-provided landers could supply the concepts and capabilities to meet this need. The request for proposals doesn’t explicitly seek new lander concepts but does ask for integrated assessments of logistics that can include transportation elements. “We’re looking for industry to offer creative insights that can inform our logistics and mobility strategy,” said Brooke Thornton, industry engagement lead for NASA’s Strategy and Architecture Office. “Ultimately, we’re hoping to grow our awareness of the unique capabilities that are or could become a part of the commercial lunar marketplace.” This is the latest appendix to NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP-2). Solicitations under NextSTEP seek commercial development of capabilities that empower crewed exploration in deep space. NASA published the latest NextSTEP omnibus, NextSTEP-3, on Sept. 27. Request for Proposals [Hidden Content] View the full article
-
A preview image of the Minecraft world inspired by NASA’s James Webb Space Telescope. Credit: Minecraft NASA invites gamers, educators, and students to grab their pickaxe and check out its latest collaboration with Minecraft exploring a new world inspired by the agency’s James Webb Space Telescope. The partnership allows creators to experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real Webb images. The James Webb Space Telescope Challenges were developed to inspire the next generation of scientists, engineers, and technicians. Through the game, students can immerse themselves in the science and technology behind Webb, deepening their understanding of NASA’s mission and sparking an interest in the real-world applications of science, technology, engineering, and math (STEM). “We’re thrilled to bring the wonders and science of NASA’s James Webb Space Telescope into the hands of the Artemis Generation through this exciting Minecraft collaboration,” said NASA Deputy Administrator Pam Melroy. “This collaboration is yet another way anyone can join NASA as we explore the secrets of the universe and solve the world’s most complex problems, making space exploration engaging for learners of all ages.” NASA’s James Webb Space Telescope launched to space Dec. 25, 2021, and has gone on to make detailed observations of the planets within our own solar system, peer into the atmospheres of planets orbiting other stars outside our solar system, and capture images and spectra of the most distant galaxies ever detected. “NASA’s collaboration with Minecraft allows players to experience the excitement of one of the most ambitious space missions ever,” said Mike Davis, Webb project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “No matter where Webb looks, it sees something intriguing, setting the stage for amazing discoveries yet to come. As people explore the Minecraft world of Webb, we hope they will be inspired to carry that interest further and maybe someday help NASA build future space telescopes.” Webb is the world’s premier space science observatory. The space telescope is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (********* Space Agency) and CSA (********* Space Agency). NASA’s Office of STEM Engagement provides unique opportunities for students to learn about STEM. In 2023, NASA partnered with Minecraft on an Artemis Challenge where users could build and launch a rocket, guide their Orion spacecraft, and even establish a lunar base alongside their team. Through collaboration with partners such as Microsoft, NASA can share the excitement of space exploration with even more students who are part of the Artemis Generation. Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at: [Hidden Content] View the full article
-
[NASA] NASA, NOAA to Provide Update on Progress of Solar Cycle
SpaceMan posted a topic in World News
NASA’s Solar Dynamics Observatory captured this image of an X9.0 solar flare – as seen in the bright flash in the center – on Oct. 3, 2024. This is the largest flare of Solar Cycle 25 to date.Credit: NASA NASA and the National Oceanic and Atmospheric Administration (NOAA) will discuss the Sun’s activity and the progression of Solar Cycle 25 during a media teleconference at 2 p.m. EDT, Tuesday, Oct. 15. Tracking the solar cycle is a key part of better understanding the Sun and mitigating its impacts on technology and infrastructure as humanity explores farther into space. During the teleconference, experts from NASA, NOAA, and the international Solar Cycle 25 Prediction Panel, which is co-sponsored by both agencies, will discuss recent solar cycle progress and the forecast for the rest of this cycle. Audio of the teleconference will stream live on the agency’s website at: [Hidden Content] Participants include: Jamie Favors, director, NASA’s Space Weather Program Kelly Korreck, program scientist, NASA’s Heliophysics Division Elsayed Talaat, director, Office of Space Weather Observations, NOAA Bill Murtagh, program coordinator, NOAA’s Space Weather Prediction Center Lisa Upton, co-chair, Solar Cycle 25 Prediction Panel To participate in the media teleconference, media must RSVP no later than 12 p.m. on Oct. 15, to Abbey Interrante at: *****@*****.tld. The Sun goes through regular cycles of activity lasting approximately 11 years. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation, all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity, such as the storm in May 2024, has sparked displays of aurora and led to impacts on satellites and infrastructure in recent months. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. The NOAA Space Weather Prediction Center is the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. For more information on how NASA studies the Sun and space weather, visit: [Hidden Content] -end- Karen Fox Headquarters, Washington 202-358-1600 *****@*****.tld Sarah Frazier Goddard Space Flight Center, Greenbelt, Md. 202-853-7191 *****@*****.tld Erica Grow Cei NOAA’s National Weather Service, College Park, Md. 202-853-6088 *****@*****.tld Share Details Last Updated Oct 08, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsThe SunHeliophysicsSpace Weather View the full article -
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. When NASA conducts research beyond our world, scientists on Earth prepare as much as possible before sending instruments on extraterrestrial journeys. One way to prepare for these exploration missions is by using machine learning techniques to develop algorithms with data from commercial instruments or from flight instruments on planetary missions. For example, NASA uses mass spectrometer instruments on Mars missions to analyze surface samples and identify organic molecules. Developing machine learning algorithms before missions can help make the process of analyzing planetary data faster and more efficient during time-limited space operations. In 2022, Victoria Da Poian, a data scientist supporting machine learning research at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, collaborated with NASA’s Center of Excellence for Collaborative Innovation to run two machine learning-based open science challenges, which sought ideas and solutions from the public. Solvers worldwide were invited to analyze chemical data sampled from commercial instruments located at NASA centers and data from the Sample Analysis at Mars (SAM) testbed, which is a replica of the instrument suite onboard the Curiosity rover. The challenges encouraged participants to be creative in their approaches and to provide detailed descriptions of their method and code. Da Poian said her team decided to use public competitions for this project to gain new perspectives: “We were really interested in hearing from people who aren’t in our field and weren’t biased by the data’s meaning or our scientific rules.” As a result, more than 1150 unique participants from all over the world participated in the competitions, and more than 600 solutions contributing models to analyze rock and soil samples relevant to planetary science were submitted. The challenges served as proof-of-concept projects to analyze the feasibility of combining data from multiple sources in a single machine learning application. In addition to benefitting from the variety of perspectives offered by challenge participants, Da Poian says the challenges were both time- and cost-efficient methods for discovering solutions. At the same time, the challenges invited the global community to participate in NASA research in support of future space exploration missions, and winners received $60,000 in total prizes across the two opportunities. Da Poian used lessons learned to develop a new challenge with Frontier Development Lab , an international research collaboration that brings together researchers and domain experts to tackle complex problems using machine learning technologies. The competition, titled “Stay Curious: Leveraging Machine Learning to Analyze & Interpret the Measurements of Mars Planetary Instruments,” ran from June to August 2024. Results included cleaning SAM data collected on Mars, processing data for a consistent, machine learning-ready dataset combining commercial and flight instrument data, investigating data augmentation techniques to increase the limited data volume available for the challenge, and exploring machine learning techniques to help predict the chemical composition of Martian terrain. “The machine learning challenges opened the door to how we can use laboratory data to train algorithms and then use that to train flight data,” said Da Poian. “Being able to use laboratory data that we’ve collected for many years is a huge opportunity for us, and the results so far are extremely encouraging.” Find more opportunities: [Hidden Content] View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light. This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor. The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour. “We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.” The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass. This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract. To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands). If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior. Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year. In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory. To virtually tour an interactive version of the telescope, visit: [Hidden Content] The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California. By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center 301-286-1940 Share Details Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related TermsNancy Grace Roman Space TelescopeGoddard Space Flight CenterScience-enabling TechnologyTechnology Explore More 2 min read Tech Today: Spraying for Food Safety Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how… Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into… Article 4 days ago View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA project manager Patricia Ortiz stands in front of the X-1E research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Lee esta historia en Español aquí. Patricia Ortiz is proud to be a first-generation Salvadoran *********. Her mother, born and raised in El Salvador, came to the ******* States for a better opportunity despite not knowing anyone or the English language. As a project manager for Space Projects and Partnerships at NASA’s Armstrong Flight Research Center in Edwards, California, Ortiz manages various space and aeronautics projects for new technologies that begin from the early stages to the **********. This involves meeting with partners, working with leadership and managing the project for performance and mission success. While reflecting on her journey to NASA, Ortiz honors her mother for her resiliency and the impact she had on her. “My mom faced a lot of hardship in coming to this country, but she came to this country so that I could do this.” This brave decision to move to an unfamiliar place was what opened the door for Ortiz to eventually work for NASA. Ortiz enjoys staying connected to her Salvadoran roots and one way she does this is through food. Her favorite dish: the pupusa. “My mom makes the best pupusas with chicharrón [pork], cheese, and curtido [cabbage slaw]. It’s so delicious!” NASA is celebrating Hispanic Heritage Month by sharing the rich histories, cultures and passions of employees who contribute to advancing the agency’s mission and success for the benefit of all humanity. This month-long, annual celebration honors and recognizes the Hispanic and Latino Americans who have positively influenced and enriched our nation and society. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirre*****@*****.tldLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterHispanic Heritage MonthPeople of ArmstrongPeople of NASAWomen at NASA Explore More 2 min read Una gerente de proyectos de la NASA rinde homenaje a la influencia de su madre Article 1 min ago 5 min read 2 NASA Employees Awarded Space and Satellite Professionals 20 under 35 of 2024 Article 4 days ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 6 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) La gerente de proyectos de la NASA Patricia Ortiz se muestra delante del avión de investigación X-1E en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California.NASA Read this story in English here. Patricia Ortiz está orgullosa de ser una salvadoreña americana de primera generación. Su madre, nacida y criada en El Salvador, vino a Estados Unidos por una oportunidad mejor sin conocer a nadie ni el idioma inglés. En su función de gerente de proyectos y asociaciones espaciales en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, Ortiz dirige diversos proyectos espaciales y aeronáuticos de nuevas tecnologías que van desde las primeras fases hasta su ejecución. Esto implica reunirse **** los socios, trabajar **** directivos y dirigir el proyecto para lograr el rendimiento y el éxito de la misión. Al reflexionar sobre su trayectoria hacia la NASA, Ortiz rinde honores a su madre por su tenacidad y por el impacto que tuvo en ella. “Mi madre se enfrentó a muchos obstáculos al venir a este país, pero vino a este país para que yo pudiera hacer esto”. Su valiente decisión de desplazarse a un lugar desconocido fue lo que le abrió las puertas a Ortiz para acabar trabajando en la NASA. A Ortiz le gusta mantenerse unida a sus raíces salvadoreñas y una forma de hacerlo es a través de la comida. Su plato favorito: la pupusa. “Mi madre hace las mejores pupusas **** chicharrón, queso y curtido. ¡Están deliciosas!” La NASA celebra el Mes de la Herencia Hispana compartiendo las ricas historias, culturas y pasiones de los empleados que contribuyen al avance de la misión y el éxito de la agencia en beneficio de toda la humanidad. Esta celebración anual, que dura un mes, honra y reconoce a los hispanos y latinos estadounidenses que han influido positivamente y enriquecido nuestra nación y nuestra sociedad. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirre*****@*****.tldLocationArmstrong Flight Research Center Related TermsNASA en españolArmstrong Flight Research CenterHispanic Heritage Month Explore More 2 min read NASA Project Manager Honors Mother’s Impact Article 50 seconds ago 3 min read Meet Hector Chavez: Leading Johnson’s Giant Leap into Low Earth Orbit Article 2 weeks ago 5 min read La NASA invita a los medios al lanzamiento de Europa Clipper Article 1 month ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
-
Credit: NASA The Dominican Republic is the latest nation to sign the Artemis Accords and joins 43 other countries in a commitment to advancing principles for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. “NASA is proud to welcome the Dominican Republic signing of the Artemis Accords as we expand the peaceful exploration of space to all nations,” said NASA Administrator Bill Nelson. “The Dominican Republic has made important strides toward a shared future in space and is now helping guide space exploration for the Artemis Generation.” Sonia Guzmán, ambassador of the Dominican Republic to the ******* States, signed the Artemis Accords on behalf of the country on Oct. 4. The country also will confirm its participation in a high-level meeting of Artemis Accords signatories taking place Monday, Oct. 14, during the International Astronautical Congress in Milan, where furthering implementation of the principles will be discussed. “This marks a historic step in our commitment to international collaboration in space exploration,” said Guzmán. “This is not just a scientific or technological milestone – it represents a future where the Dominican Republic contributes to the shared goals of peace, sustainability, and innovation beyond our planet. By joining the global effort to explore the Moon, Mars, and beyond, we are also expanding the opportunities particularly for our young Dominicans in science, education, and economic development.” In 2020, the ******* States and seven other nations were the first to sign the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming weeks and months. For more information about NASA’s programs, visit: [Hidden Content] -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b*****@*****.tld / *****@*****.tld Share Details Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsArtemis AccordsOffice of International and Interagency Relations (OIIR) View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand NASA’s Mars rover Curiosity captured this image using its Left Navigation Camera on Sol 4323 — Martian day 4,323 of the Mars Science Laboratory mission — on Oct. 4, 2024, at 00:29:40 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 4, 2024 If you read this blog very often, you know that nearly every time the rover stops for science, MAHLI and APXS focus on interesting (and accessible!) rocks as targets. The rover science team is, after all, built with a lot of geologists. But geology is not all rocks, all the time — sand is former rock that if ******* and pressurized long enough will become rock again. Today was time for sand to shine, as the workspace was cut by troughs of sand of different colors and brightnesses, and it had been nearly 500 sols since we acquired our last dedicated sand measurement with APXS and MAHLI. The “Pumice Flat” target was one of the brighter sand patches while “Kidney Lake” was one of the darker sand patches. APXS uses a special placement mode over sand targets so the instrument gets close, but not too close, to the loose material which could foul up the instrument. Not-rock was also the purview of our environmental observations. Navcam is scheduled for imaging seeking out clouds and dust devils, and changes in the sand and dust on top of the rover deck. Both Navcam and Mastcam will make observations to measure the amount of dust in the atmosphere. REMS will keep track of our weather with regular measurements, RAD will monitor our radiation environment, and DAN will look through rock for signs of water beneath our drive path. Unsurprisingly, the rest of the rover could not ignore bedrock. We managed to squeeze in DRT cleaning of a nice bedrock slab, “Ribbon Fall,” for MAHLI-only imaging. In places, the bedrock slabs were cut by thin veins of darker gray material, similar to dark gray materials we saw in the bedrock on the other side of Gediz Vallis. ChemCam targeted one of these dark gray examples at “****** Divide,” and also rastered across some of the prominent layers visible in the vertical faces in the workspace at the aptly named “Profile View.” Our imaging efforts could be roughly divided between looking back at our path through Gediz Vallis from our new and higher perspective, and looking ahead to what awaits us. ChemCam planned RMI mosaics back toward a field of the white stones we spent time studying in Gediz Vallis and toward a part of the edge of Gediz Vallis that we did not explore previously. Mastcam looked back at the part of the edge of Gediz Vallis we just traversed, “Pilot Peak,” for clues as to why it sits higher than the bedrock farther from the channel edge. They also targeted “Clyde Spires,” which was a gravel ridge in Gediz Vallis of interest as we drove by it initially. Looking ahead, Mastcam imaged a puzzling gray rock sitting atop the bedrock slabs south of us at target “Buena Vista Grove,” and further south still, they planned a large mosaic covering a very big rock — the spectacular “Texoli” butte that has loomed and will continue to loom over our path for months to come. Written by Michelle Minitti, Planetary Geologist at Framework Share Details Last Updated Oct 07, 2024 Related Terms Blogs Explore More 2 min read Perseverance Matters It is an important and exciting juncture in Mars exploration and astrobiology. This year, the… Article 5 hours ago 2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel Article 4 days ago 2 min read Sols 4321-4322: Sailing Out of Gediz Vallis Article 5 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article