Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    1,464
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. Name: Christine Knudson Title: Geologist Formal Job Classification: Research Assistant Organization: Planetary Environments Laboratory, Science Directorate (Code 699) Christine Knudson is a geologist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She began graduate school in August 2012, the same month that NASA’s Curiosity rover landed on Mars. “It is very exciting to be part of the rover team and to be involved in an active Mars mission,” she says. “On days when we’re downlinking science data and I’m on shift, I am one of the first people to see data from an experiment done on Mars!”Courtesy of Christine Knudsen What do you do and what is most interesting about your role here at Goddard? I am a geologist doing both laboratory and field work, primarily focusing on Mars analog research. I work on the Curiosity rover as part of the Sample Analysis at Mars (SAM) instrument team. Why did you become a geologist? As a child, I always loved being outside and I was really interested in all things related to the Earth. In college, I figured out that I wanted to be a geologist after taking an introduction to geology course. I wanted to learn more about the Earth and its interior, specifically volcanism. What is your educational background? In 2012, I received a B.S. in geology and environmental geoscience from Northern Illinois University. In August 2012, the same month that Curiosity landed on Mars, I started graduate school and in December 2014, I received a M.S. in geology from the same university. I focused on igneous geochemistry, investigating the pre-eruptive water contents of a Guatemalan volcano. Why did you come to Goddard? I came to Goddard in February 2015 to perform laboratory analyses of Mars analog materials, rock and mineral samples, from Earth, that the Curiosity rover and spectral orbiters have also identified on Mars. It is very exciting to be part of the rover team and to be involved in an active Mars mission. What is a highlight of your work as a laboratory geologist doing Mars analog research? Using laboratory analyses to interpret data we are getting back from Curiosity is incredibly exciting! I perform evolved gas analysis to replicate the analyses that the SAM instrument does on the rover. Curiosity scoops sand or drills into the rocks at stops along its drive through Gale Crater on Mars, then dumps the material into a small cup within the SAM instrument inside the rover. The rock is heated in a small oven to about 900 C [about 1650 F], and the instrument captures the gases that are released from the sample as it is heated. SAM uses a mass spectrometer to identify the different gases, and that tells us about the minerals that make up the rock. We do the same analyses on rocks and minerals in our lab to compare to the SAM analyses. The other instruments on Curiosity also aid in the identification of the rocks, minerals, and elements present in this location on the Martian surface. I also serve as a payload downlink lead for the SAM instrument. I check on the science and engineering data after we perform an experiment on Mars. On the days I’m on shift, I check to make sure that our science experiments finish without any problems, and that the instrument is “healthy,” so that the rover can continue driving and begin the science that is planned for the next sol. On days when we’re downlinking science data and I’m on shift, I am one of the first people to see data from an experiment done on Mars! What is some of the coolest field work you have done? I have done Mars analog field work in New Mexico, Hawaii, and Iceland. The field work in Hawaii is exciting because one of our field sites was inside a lava tube on Mauna Loa. We expect that there are lava tubes on Mars, and we know that the interior of the tubes would likely be better shielded from solar radiation, which might allow for the preservation of organic markers. Scientifically, we’re interested in characterizing the rocks and minerals inside lava tubes to understand how the interior differs from the surface over time and to investigate differences in elemental availability as an accessible resource for potential life. Learning about these processes on Earth helps us understand what might be possible on Mars too. “The field work in Hawaii is exciting because one of our field sites was inside a lava tube on Mauna Loa,” Knudson says. “We expect that there are lava tubes on Mars, and we know that the interior of the tubes would likely be better shielded from solar radiation, which might allow for the preservation of organic markers.”Courtesy of Christine Knudson I use handheld versions of laboratory instruments, some of which were miniaturized and made to fit on the Curiosity rover, to take in situ geochemical measurements — to learn what elements are present in the rocks and in what quantities. We also collect samples to analyze in the laboratory. I also love Hawaii because the island is volcanically active. Hawaii Volcano National Park is incredible! A couple years ago, I was able to see the lava lake from an ongoing eruption within the crater of Kīlauea volcano. The best time to see the lava lake is at night because the glowing lava is visible from multiple park overlooks. As a Mars geologist, what most fascinates you about the Curiosity rover? When Curiosity landed, it was the largest rover NASA had ever sent to Mars: It’s about the size of a small SUV, so landing it safely was quite the feat! Curiosity also has some of the first science instruments ever made to operate on another planet, and we’ve learned SO much from those analyses. Curiosity and the other rovers are sort of like robotic geologists exploring Mars. Working with the Curiosity rover allows scientists to do geology on Mars — from about 250 million miles away! Earth analogs help us to understand what we are seeing on Mars, since that “field site” is so incredibly far away and inaccessible to humans at this time. What do you do for fun? I spend most of my free time with my husband and two small children. We enjoy family hikes, gardening, and both my boys love being outside as much as I do. I also enjoy yoga, and I crochet: I make hats, blankets, and I’m starting a sweater soon. What is your “six-word memoir”? A six-word memoir describes something in just six words. Nature-lover. Mom. Geologist. Cat-enthusiast. Curious. Snack-fiend. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Oct 16, 2024 EditorRob GarnerContactRob Garner*****@*****.tldLocationGoddard Space Flight Center Related TermsThe Solar SystemCuriosity (Rover)MarsMars Science Laboratory (MSL)People of GoddardPeople of NASA Explore More 7 min read Michael Thorpe Studies Sediment from Source to Sink Sedimentary and planetary geologist Michael Thorpe finds the stories rocks have to tell, those on… Article 9 months ago 5 min read Casey Honniball: Finding Her Space in Lunar Science Article 7 months ago 3 min read Malika Graham: Helping NASA Bring Mars Back to Earth Article 3 years ago View the full article
  2. 7 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Juvenile ******, white, and yellow-striped Bluehead wrasse fish dart in and out of a ***** colony of pillar coral (Dendrogyra cylindrus), now covered in various algae, in the waters of Playa Melones, Puerto Rico. NASA Ames/Milan Loiacono Coral reefs cover only 1% of the ocean floor, but support an estimated 25% of all marine life in the ocean, earning them the moniker ‘rainforest of the sea.’ They also play a critical role for coastal communities; preventing coastal erosion, protecting coastlines from hurricane damage, and generating $36 billion in annual income worldwide. We asked Juan Torres-Pérez, a research scientist and coral reef expert at NASA Ames Research Center, about the science behind coral reefs, and the role they play in both marine ecosystems and human communities. What is the difference between a reef, coral, and a coral reef? Reef Reefs are ridge-like structures, either natural or artificial. “A reef by definition is a structure that provides some relief above the ocean floor,” Torres-Pérez said. “It could be something man-made: you can pile a bunch of car tires, and then they get colonized by different organisms. Or it could be natural: a small hill on top of the ocean floor in which the primary framework is a rock.” Corals Corals are animals from the phylum Cnidaria, typically found along tropical coastlines. They comprise hundreds to thousands of living organisms called polyps, each only a few millimeters in diameter. Each polyp has its own body and a mouth with stinging tentacles to capture food such as plankton and small fish. The polyps grow together until they form a colony, and it is this colony that we recognize as a coral. There are two types of coral: hard corals and soft corals. Hard corals, also known as stony corals or more formally as Scleractinians, secrete calcium carbonate to form a hard skeleton; it is this type of coral that form a coral reefs. Soft corals, also known as Alcyonacea, are fleshy and bendable, often resembling trees or fans. Juvenile ******, white, and yellow-striped Bluehead wrasse fish dart in and out of a reef, composed of yellow ***** coral (Millepora complanate, back left), branching finger coral (Porites furcate, front left), and various species of sea rods and sea fans. This coral reef sits in the waters of Playa Melones, Puerto Rico. NASA Ames/Milan Loiacono The colorful appearance of corals comes from the microscopic algae that live inside coral cells, called zooxanthellae. These algae perform photosynthesis, bringing vital food and nutrients to the corals. “The majority of the products from photosynthesis, about 80 to 90%, pass on to the coral, and then the coral uses those for its own metabolism,” said Torres-Pérez. “This is why corals are usually found in shallow waters: because these organisms need the sunlight to photosynthesize.” Coral Reefs A coral reef is a term used to describe the collective structure of hard corals that help shape a coral reef ecosystem. “A coral reef is a reef whose main structure is made by living organisms, in this case corals,” said Torres-Pérez. “A coral reef will always be a reef, but not all reefs are coral reefs.” The largest coral reef in the world is Australia’s Great Barrier Reef, which is over 1,000 miles long and covers around 133,000 square miles. Why are coral reefs important? Healthy coral reefs play a crucial role in providing coastal protection, habitats for marine life, and even key ingredients for potential new medicines. “Coral reef ecosystems provide habitat for thousands of species, from unicellular organisms like bacteria or some phytoplankton communities, to large organisms like sharks, groupers or snappers, and reptiles like sea turtles,” Torres-Pérez said. Corals act as a protective barrier during big storm events such as typhoons or hurricanes and have proven to be 97% effective in preventing damage to the natural and built environment. As coral reefs have been damaged in recent decades, coastal flooding and erosion have increased, causing significant damage to coastal communities. Many communities depend on coral reefs as a resource to sustain their livelihoods. “These are critical ecosystems, not only in terms of the whole biodiversity of the planet but because they also provide sustenance for millions of people, especially in island nations,” Torres-Pérez said. Coral reefs also support fisheries (fish caught for commercial, recreational, or subsistence purposes), recreational activities, and educational purposes. Scientists have been exploring coral as a new ingredient source for some medicines. They have discovered that a chemical from coral can be extracted to create antibiotics that are effective against bacteria resistant to other types of antibiotics. These ingredients are replicated in a lab, eliminating the need to continuously harvest and harm corals. What are some current threats to coral reefs? According to a 2020 report produced by the Global Coral Reef Monitoring Network (GCRMN), 14% of the world’s coral reefs have been lost since 2009. In the wake of the 2023-2024 global coral bleaching event, that number is expected to increase. Map showing sea surface temperatures in March, 2022 near the Great Barrier Reef in Australia. The darker red colors indicate an in increase in sea surface temperature. Coral bleaching is caused by increasing ocean temperatures. As water temperatures rise, it causes corals to expel their zooxanthellae, leaving behind a bone-white shell and depriving the coral of its main food source. “Eventually what happens is that the coral is too weak to compete with other organisms, like filamentous algae, that can overgrow the coral and eventually ***** the whole colony,” said Torres-Pérez. Other threats to coral reefs come from human activity, such as pollution or physical damage. “Increases in sedimentation from poor land management get deposited into the reefs,” said Torres-Pérez, citing urban stormwater runoff and deforestation as two examples of sedimentation. Coral sedimentation is the deposition and accumulation of sediments, like fine sands or mud, on a reef. This clouds the waters, blocking critical sunlight and reducing the ability of zooxanthellae to photosynthesize. Another human-caused threat to corals is eutrophication, the unnatural increase of nutrients in the water. “Eutrophication provides grounds for the development of filamentous algae, which grows much faster than corals,” said Torres-Pérez. Some of these excess nutrients in the water come from sewage released into coastal waters or runoff of agricultural fertilizers into the ocean. The algae feed off the excess nutrients and grow into massive blooms, which suppress the growth of corals. Cyanobacteria overgrowth crowds the water of Playa Melones, Puerto Rico, likely caused by an on-land source of pollution leeching excess nutrients into the water. In the background float students and instructors from the NASA OCEANOS internship.NASA Ames/Milan Loiacono Moreover, Torres-Pérez pointed out that human-caused physical damage to reefs can result from mechanical damage, such as ship anchors being thrown onto corals. Some fishing techniques, like deep water trawling (dragging fishing nets along the sea floor), can also damage reefs by pulling and tearing corals away from their bases. On a more individual scale, coral damage can also result from being stepped on by humans, or accumulated trash left behind by beach-goers. What is being done to protect coral, at NASA and beyond? Many coral reefs in the world are still unclassified, unexplored, or yet to be discovered. NASA’s NeMO-Net hopes to change that. Torres-Pérez, who is a Co-Investigator for NeMO-Net, described how the citizen science project functions like an interactive mobile video game, allowing anyone to identify corals. “Users can characterize different components of a coral reef based on 2D [and 3D] images of a coral reef,” said Torres-Pérez. “which goes into a machine learning component.” The information from these classifications is fed into a scientific model and helps NASA both classify and assess the health of coral reefs around the world. To learn more about NeMO-Net and how to get involved, check out their website. In 2022, Torres-Pérez founded OCEANOS (Ocean Community Engagement and Awareness using NASA Earth Observations and Science for Hispanic/Latino Students), a program aimed at bringing oceanography and STEM opportunities to the next generation of Hispanic/Latino students in Puerto Rico. During the program, students build and test their own low-cost optical sensors, test data in a phytoplankton lab, replant coral reefs, and create storymap presentations of their work. “We want students to feel confident and capable to pursue STEM careers,” Torres-Pérez said, “and we want them to become agents of change in their community to share the importance of preserving the ocean.” OCEANOS PI Juan Torres-Pérez delivers the opening address of the 2023 final presentations to a crowded room at the EcoExploratorio: el Museo de Ciencias de Puerto Rico.NASA Ames/Milan Loiacono Outside of NASA, Torres-Pérez is an active member of the U.S. Coral Reef Task Force (USCRTF); an interagency body established in 1998 from Executive Order 13089: Coral Reef Protection that aims to preserve, protect, and restore coral reef ecosystems. Resources to Learn More To learn more about coral reefs and how they are monitored, Torres-Pérez recommends checking out resources from the National Oceanic and Atmospheric Administration (NOAA), which has a section on their website dedicated to corals. One notable coral reef resource from NOAA is their Coral Reef Watch website, which monitors sea surface temperatures on global and local scales. The website serves government and non-governmental agencies with their data products, which are used to monitor and predict climate impacts on coral reefs worldwide. Written by: Katera Lee, NASA Ames Research Center Share Details Last Updated Oct 15, 2024 Related TermsGeneralEarth ScienceEarth Science Division Explore More 2 min read $1.5 Million Awarded at Watts on the Moon Finals Article 5 hours ago 1 min read NASA Glenn Connects with Morehead State University Article 5 hours ago 15 min read OpenET: Balancing Water Supply and Demand in the West Article 1 day ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  3. Researchers verified that 3D micro-computed tomography scans can map the orientation of plant roots in space and used the method to demonstrate that carrots grown in actual and simulated microgravity both had random root orientation. These findings suggest that simulated microgravity offers a reliable and more affordable tool for studying plant adaptation to spaceflight. MULTI-TROP evaluated the role of gravity and other factors on plant growth. Plant roots grow downward in response to gravity on Earth, but in random directions in microgravity, which is a challenge for developing plant growth facilities for space. Results from this investigation could help address this challenge, advancing efforts to grow plants for food and other uses on future space missions as well as improving plant cultivation on Earth. Preflight image of the BIOKON facility used to grow carrots for MULTI-TROP. Kayser Italia For climate model simulations, researchers developed four parameters of electrical discharges from thunderclouds that produce visual emissions known as Blue LUminous Events or BLUEs. BLUEs are thought to affect regional atmospheric chemistry and climate. The parameters reported by this study could inform models that help test the global and regional effects of thunderstorm corona discharges, including how their geographic distribution and global occurrence rate will change as the atmosphere warms. ASIM, an investigation from ESA (********* Space Agency), studies high-altitude lightning in thunderstorms and the role it plays in Earth’s atmosphere and climate. Scientists need to understand processes occurring in Earth’s upper atmosphere to determine how lightning is connected to Earth’s climate and weather so they can develop better atmospheric models to guide weather and climate predictions. Lightning in a thunderstorm off the coast of ******* as seen from the International Space Station. NASA/Matthew Dominick A technique to detect sounds generated by the inner ear could be used as a non-invasive tool for monitoring changes in fluid pressure in the head during spaceflight. Increased fluid pressure in the head that occurs in microgravity can cause visual impairment and may also affect the middle and inner ear. Insight into fluid pressure changes could help scientists develop ways to protect astronauts from these effects. The ESA and ASI investigation Acoustic Diagnostics monitored hearing function in astronauts on long-term missions using otoacoustic emissions (sounds generated by the inner ear in response to specific tones). Researchers compared these measurements before and during flight to indirectly detect changes in fluid pressure in the head. Different body position and fit of the ear probes affected results of the test and the authors note that these issues need to be addressed. NASA astronaut Drew Morgan participates in a hearing test for the Acoustic Diagnostics investigation. ESA (********* Space Agency)/Luca ParmitanoView the full article
  4. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Dr. Rickey Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists.Credit: NASA Dr. Rickey J. Shyne, director of Research and Engineering at NASA’s Glenn Research Center in Cleveland, has been named one of Crain’s Cleveland Business’ 2024 Notable ****** Leaders. Shyne is responsible for leading a staff of approximately 1,100 engineers and scientists, and managing research and development in propulsion, communications, power, and materials and structures for extreme environments in support of the agency’s missions. He is on the board of Southwest General Health Center and a former board member of Cleveland Engineering Society. Crain’s Notable ****** Leaders represent all industries and communities. From magnates to mentors, they are working to enrich their companies, communities and city. Nominees must serve in a senior leadership role at their company or organization; have at least five years of experience in their field; and demonstrate significant accomplishments within their industry, professional organizations, and civic and community groups. They must live and work in the Northeast Ohio area. Shyne is featured in the Crain’s September 30 issue, online and in print. Return to Newsletter Explore More 2 min read Ohio State Marching Band Performs Tribute to NASA Article 23 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago 1 min read Visitors Explore NASA at Ingenuity Fest Article 23 mins ago View the full article
  5. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Orbital Mining Corporation took second place in NASA’s Watts on the Moon Challenge. Left to right: Rob Button, deputy chief of NASA Glenn’s Power Division; three members of the team; Mary Wadel, NASA director of Technology Integration and Partnerships; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-Hanna Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland, hosted the final phase of NASA’s Watts on the Moon Challenge on Sept. 20. NASA astronaut Stephen Bowen attended to help acknowledge the top winners. NASA awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish a long-term human presence on the Moon. This two-phase competition challenged U.S. innovators to develop breakthrough technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The winning teams are: First Prize ($1 million): Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara , won the grand prize for their hardware solution, which featured the lowest mass and highest efficiency of all competitors. Second prize ($500,000): Orbital Mining Corporation, a space technology startup in Golden, Colorado, earned the second prize for its hardware solution that also successfully completed the 48-hour test with high performance. Four teams were invited to refine their hardware and deliver full system prototypes in the  final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The University of California (UC), Santa Barbara, took first place in NASA’s Watts on the Moon Challenge. Left to right: Mary Wadel, NASA director of Technology Integration and Partnerships; Rob Button, deputy chief of NASA Glenn’s Power Division; UC Santa Barbara team members; and NASA astronaut Stephen Bowen. Credit: NASA/Sara Lowthian-Hanna NASA Glenn’s Mary Wadel, director of Technology Integration and Partnerships, recognized the work involved to bring this challenge to its conclusion. Rob Button, deputy chief of Glenn’s Power Division and his team of experts, formulated and ********* the challenge and oversaw testing. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. As the agency’s lead center for power systems technologies, NASA Glenn has been involved in the Watts on the Moon Challenge from its inception. Return to Newsletter Explore More 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago 15 min read OpenET: Balancing Water Supply and Demand in the West Article 21 hours ago 3 min read NASA Activates Resources to Help Assess Impacts from Hurricane Milton Article 3 days ago View the full article
  6. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Ohio State University Marching Band pays tribute to NASA with a NASA worm logo formation. Credit: NASA/Brian Newbacher The Ohio State University (OSU) teamed up with NASA’s Glenn Research Center in Cleveland for a multi-faceted tribute to NASA on Sept 21. During a home football game against Marshall University, OSU’s Marching Band recognized the agency with a NASA-themed halftime show, in-game salute, and tribute to Glenn and two alums who play significant roles in NASA’s spaceflight operations. NASA Glenn Center Director Dr. Jimmy Kenyon and NASA employees and Ohio State alums Jeff and Molly Radigan are recognized by more than 100,000 fans in Ohio Stadium. Credit: NASA/Brian Newbacher The event kicked off in the morning during the Skull Session (pep rally) at St. John Arena on OSU’s campus. Public Address Announcer Wes Clark talked with Center Director Dr. Jimmy Kenyon, who shared information about Glenn and thanked OSU for the honor. During a special spotlight, Kenyon and OSU alums who now work at NASA’s Kennedy Space Center – Jeff Radigan, a NASA flight director, and Molly Radigan, deputy chief of Space Flight Systems – came onto the field to be recognized. The Ohio State University Marching Band pays tribute to NASA while in formation of an astronaut on the Moon. Credit: NASA/Brian Newbacher At halftime, a special astronaut video from the International Space Station introduced the NASA-themed show. The band then blasted off with its space-themed performance that included several songs — from “Fly Me to the Moon” to “Starman.” The talented band members marched in formations that included an astronaut and spaceship blasting off, garnering excitement for NASA and cheers from the audience. Back to Newsletter Explore More 1 min read Dr. Rickey Shyne Named Crain’s Notable ****** Leader Article 22 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago 1 min read Visitors Explore NASA at Ingenuity Fest Article 23 mins ago View the full article
  7. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Dr. Benjamin Malphrus, executive director of the Space Science Center at Morehead State University, left, listens as NASA Glenn Center Director Dr. Jimmy Kenyon talks about NASA’s exploration efforts.Credit: Morehead State University NASA’s Glenn Research Center Director Dr. Jimmy Kenyon met with students and faculty at Morehead State University (MSU) in Kentucky on Sept. 19. Kenyon provided the keynote address on the topic of NASA’s exploration efforts and regional economic impact during the ASTRA-**** (Appalachian Space Technology & Research Advancement Conference). He also moderated a panel, which included Blue Origin’s Orbital Reef Lead Dr. ****** Lillard, MSU’s Dr. Pamela Clark (formerly of NASA’s Jet Propulsion Laboratory and Goddard Space Flight Center), and Glenn ********* Service Module Manager Logan Larson. Morehead State University (MSU)’s Dr. Benjamin Malphrus, right, shows NASA Glenn Center Director Dr. Jimmy Kenyon and others on tour the anechoic (echo-free) chamber used in support of MSU’s 21-meter Deep Space Network. Credit: Morehead State University Dr. Benjamin Malphrus, executive director of the Space Science Center at MSU, provided Kenyon, along with House Appropriations Subcommittee Chairman Hal Rogers’ staff and members of industry, with a tour of the space center and its capabilities. Kenyon learned about MSU’s space systems engineering program where students gain hands-on experience designing, constructing, and testing satellites before they launch into space. Members of NASA Glenn’s Technology Transfer Office also staffed an informative exhibit during the conference. Return to Newsletter Explore More 1 min read Dr. Rickey Shyne Named Crain’s Notable ****** Leader Article 22 mins ago 2 min read $1.5 Million Awarded at Watts on the Moon Finals Article 23 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA Article 23 mins ago View the full article
  8. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Jamie Richey shares opportunities for the public to engage with NASA during the Cleveland Ingenuity Fest 2024: Take Flight. Credit: NASA/Debbie Welch NASA’s Glenn Research Center participated in the Cleveland Ingenuity Fest 2024: Take Flight on Sept. 27-29. Ingenuity Fest, held at the 300,000-square-foot Hamilton Collaborative, features artwork, musicians, dancers, poets, and performances of all types. It also highlights maker and innovator exhibits, fine art, and more. NASA Glenn’s staff shared opportunities for the community to engage directly with NASA through prize challenges, crowdsourcing, and citizen science. Through these platforms, the public can make an impact on NASA’s mission by providing innovative solutions to address the agency’s needs. NASA Graphics and Visualization Lab’s Nikhita Kalluri shows visitors NASA’s advanced visualization technology during the Cleveland Ingenuity Fest 2024: Take Flight. Credit: NASA/Debbie Welch Guests learned about the agency’s mission to send the first woman and first person of ****** to the Moon through the Artemis program, experienced virtual reality visualizations showing NASA’s work with radioisotope power systems, and learned about the effects of drag on an aircraft using a mini wind tunnel. The Graphics and Visualization Lab showcased NASA’s advanced visualization technology to provide innovative solutions for the agency and the scientific community. Return to Newsletter Explore More 1 min read Dr. Rickey Shyne Named Crain’s Notable ****** Leader Article 22 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA Article 23 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago View the full article
  9. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Harvest Moon refers to the nearest full Moon to the autumnal equinox. The Moon appeared full for about three days last month from the evening of Monday, Sept. 16, through Thursday morning, Sept. 19. The brightest Moon was on Sept. 17. NASA’s Glenn Research Center photographers captured images of this supermoon as it shone across Cleveland. Here’s how they described it: “Complex.” Sara Lowthian-Hanna captured this composite image of the Moon above a Guardians of Traffic statue near downtown Cleveland. The Sept. 17 Harvest Moon had a lot going on: it was full, a supermoon, and experienced a partial lunar eclipse (when the Earth’s shadow falls upon the Moon’s surface). Credit: NASA/Sara Lowthian-Hanna “Shy.” Quentin Schwinn patiently waited for the Moon to peek out from behind clouds above the hangar at NASA’s Glenn Research Center. He took this shot just as a plane whizzed in front of the face of the Moon. Credit: NASA/Quentin Schwinn “Epic.” Jef Janis captured this shot of the Moon above the colorfully illuminated Rock & Roll Hall of Fame in downtown Cleveland. Credit: NASA/Jef Janis “Dramatic.” Jordan Salkin took this up-close image of wispy aircraft contrails crossing the face of the Moon. Credit: NASA/Jordan Salkin Return to Newsletter Explore More 1 min read Dr. Rickey Shyne Named Crain’s Notable ****** Leader Article 22 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA Article 23 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago View the full article
  10. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Artemis II crew members (left to right) Reid Wiseman, Christina Koch, and Jeremy Hansen share information about themselves and their mission during a town hall at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Sara Lowthian-Hanna Three of the four astronauts who will venture around the Moon on Artemis II, the first crewed flight paving the way for future lunar surface missions, visited NASA’s Glenn Research Center in Cleveland, Sept. 10-11. NASA Glenn is an integral part of the development of the Orion spacecraft and a leader in propulsion, power, and communications research. Commander Reid Wiseman  and Mission Specialists  Christina Koch and Jeremy Hansen (********* Space Agency) discussed their upcoming mission and hosted a question-and-answer session during town hall events at Lewis Field in Cleveland and NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Victor Glover, who was unable to attend, is the pilot and fourth crew member. Both events included tours and recognition of employees who have contributed to the success of Artemis missions. Artemis II crew members Reid Wiseman, Christina Koch, and Jeremy Hansen (left to right, wearing blue flight suits) and other NASA personnel look down into the stainless-steel vacuum chamber in the In-Space Propulsion Facility at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. This is the world’s only facility capable of testing full-scale upper stage launch vehicles and rocket engines under simulated high-altitude conditions.Credit: NASA/Sara Lowthian-Hanna The Artemis II crew will lift off on an approximately 10-day mission from Launch Complex 39B at NASA’s Kennedy Space Center in Florida, blazing beyond Earth’s grasp atop the agency’s mega Moon rocket. The crew will check out Orion’s systems and perform a targeting demonstration test relatively close to Earth before venturing around the Moon.  Back to Newsletter Explore More 1 min read Dr. Rickey Shyne Named Crain’s Notable ****** Leader Article 22 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA Article 23 mins ago 1 min read NASA Glenn Connects with Morehead State University Article 23 mins ago View the full article
  11. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Science in Space: October 2024 Cultures around the world celebrate Halloween on Oct 31. In many places, in addition to people wearing costumes and eating candy, this day is associated with spooky decorating using fake blood, skeletons, flies, and spiders, some of them glow-in-the-dark. Crew members on the International Space Station have been known to indulge in a bit of dressing up and candy consumption to mark the day, and the research they conduct year-round occasionally involves these iconic Halloween themes. No tricks, just treats. JAXA astronaut Koichi Wakata and NASA astronauts Frank Rubio, Nicole Mann, and Josh Cassada dressed up for Halloween 2022.NASA A current investigation, Megakaryocytes Flying-One or MeF1, investigates how components of real blood known as megakaryocytes and platelets develop and function during spaceflight. Megakaryocytes are large cells found in bone marrow and platelets are pieces of these cells. Both play important roles in blood clotting and immune response. Results could improve understanding of changes in inflammation, immune responses, and clot formation in spaceflight and on the ground. Creepy crawlies Fake spiders and flies are popular Halloween decorations (and fodder for fun pranks). Several investigations on the space station have used real ones. Fruit Fly Lab-02 used fruit flies, Drosophila melanogaster, to examine the cellular and genetic mechanisms that affect heart health during spaceflight. The flies experienced several effects on cardiac function, including changes in muscle fibers, that could be a fundamental response of heart muscles to microgravity. MVP Fly-01 looked at how spaceflight affects immune function and resulting changes to the nervous system of the same type of flies, along with the value of artificial gravity as a countermeasure. Researchers found that artificial gravity provided some protection to physical changes to the central nervous system from spaceflight. Spiders, Fruit Flies and Directional Plant Growth (CSI-05) compared the weaving characteristics of golden orb-web spiders on the space station and the ground. Under natural conditions, the spiders build asymmetric webs with the hub near the upper edge, where they wait for prey. In microgravity, most but not all webs were quite symmetric, although webs built when the lights were on were more asymmetric and the spiders waited facing away from the lights. This could mean that in the absence of gravity, the spiders orient to the direction of light. A golden-orb weaver and its web on the space station.NASA Bad to the bones Everyone needs healthy bones and skeletons, and not just on Halloween. But spaceflight and aging on Earth can cause loss of bone mass. Space station research has looked at the mechanisms behind this loss as well as countermeasures such as exercise and nutrition. Bisphosphonates as a Countermeasure to Bone Loss examined whether a medication that blocks the breakdown of bone, in conjunction with the routine in-flight exercise program, protected crew members from bone mineral density loss during spaceflight. The research found that it did reduce loss, which in turn reduced the occurrence of kidney stones in crew members. Assessment of the Effect of Space Flight on Bone (TBone) studied how spaceflight affects bone quality using a high-resolution bone scan technique. Researchers found incomplete recovery of bone strength and density in the tibia (a bone in the lower leg), comparable to a decade or more of terrestrial age-related bone loss. The work also highlighted the relationship between length of a mission and bone loss and suggested that pre-flight markers could identify crew members at greatest risk. In a merging of blood and bones, CSA’s Marrow looked at whether microgravity has a negative effect on bone marrow and the blood cells it produces. Decreased production of red blood cells can lead to a condition called space anemia. Findings related to the expression of genes involved in red blood cell formation and those related to bone marrow adipose or **** tissue, which stores energy and plays a role in immune function, could contribute to development of countermeasures. Marrow results also suggested that the destruction of red blood cells (known as hemolysis) is a primary effect of spaceflight and contributes to anemia. Bad news for vampires. ESA astronaut Thomas Pesquet storing Marrow samples in MELFI.NASA It glows in the dark Fluorescence – a cool effect at a ghoulish party – also is a common tool in scientific research, enabling researchers to see physical and genetic changes. The space station has special microscopes for observing glow-in-the-dark samples. For Medaka Osteoclast 2, an investigation from JAXA (Japan Aerospace Exploration Agency), researchers genetically modified translucent Medaka fish with fluorescent proteins to help them observe cellular and genetic changes the fish experience during spaceflight. One analysis revealed a decrease in the mineral density of bones in the throat and provided insights into the mechanisms behind these changes. A translucent Medaka fish with fluorescent proteins showing its bone structure.Philipp Keller, Stelzer Group, EMBL Biorock, an investigation from ESA (********* Space Agency), examined how microgravity affects the interaction between rocks and microbes and found little effect on microbial growth. This result suggests that microbial-supported bioproduction and life support systems can perform in reduced gravity such as that on Mars, which would be a perfect place for an epic Halloween celebration. Preflight fluorescence microscopy image of a biofilm for the Biorock experiment.NASA Keep Exploring Discover More Topics From NASA International Space Station Space Station Research and Technology Space Station Research Results Station Benefits for Humanity View the full article
  12. 6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle In a teleconference with reporters on Tuesday, representatives from NASA, the National Oceanic and Atmospheric Administration (NOAA), and the international Solar Cycle Prediction Panel announced that the Sun has reached its solar maximum *******, which could continue for the next year. The solar cycle is a natural cycle the Sun goes through as it transitions between low and high magnetic activity. Roughly every 11 years, at the height of the solar cycle, the Sun’s magnetic poles flip — on Earth, that’d be like the North and South poles swapping places every decade — and the Sun transitions from being calm to an active and stormy state. Visible light images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, Dec. 2019) versus solar maximum (right, May 2024). During solar minimum, the Sun is often spotless. Sunspots are associated with solar activity and are used to track solar cycle progress. For these images and more relating to solar maximum, visit [Hidden Content]. NASA/SDO Images from NASA’s Solar Dynamics Observatory highlight the appearance of the Sun at solar minimum (left, December 2019) versus solar maximum (right, May 2024). These images are in the 171-angstrom wavelength of extreme ultraviolet light, which reveals the active regions on the Sun that are more common during solar maximum. For these images and more relating to solar maximum, visit [Hidden Content]. NASA/SDO NASA and NOAA track sunspots to determine and predict the progress of the solar cycle — and ultimately, solar activity. Sunspots are cooler regions on the Sun caused by a concentration of magnetic field lines. Sunspots are the visible component of active regions, areas of intense and complex magnetic fields on the Sun that are the source of solar eruptions. “During solar maximum, the number of sunspots, and therefore, the amount of solar activity, increases,” said Jamie Favors, director, Space Weather Program at NASA Headquarters in Washington. “This increase in activity provides an exciting opportunity to learn about our closest star — but also causes real effects at Earth and throughout our solar system.” The solar cycle is the natural cycle of the Sun as it transitions between low and high activity. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation — all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems — such as radio and GPS — and power grids on Earth. Credits: Beth Anthony/NASA Solar activity strongly influences conditions in space known as space weather. This can affect satellites and astronauts in space, as well as communications and navigation systems — such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity has led to increased aurora visibility and impacts on satellites and infrastructure in recent months. During May 2024, a barrage of large solar flares and coronal mass ejections (CMEs) launched clouds of charged particles and magnetic fields toward Earth, creating the strongest geomagnetic storm at Earth in two decades — and possibly among the strongest displays of auroras on record in the past 500 years. May 3–May 9, 2024, NASA’s Solar Dynamics Observatory observed 82 notable solar flares. The flares came mainly from two active regions on the Sun called AR 13663 and AR 13664. This video highlights all flares classified at M5 or higher with nine categorized as X-class solar flares. Credit: NASA “This announcement doesn’t mean that this is the peak of solar activity we’ll see this solar cycle,” said Elsayed Talaat, director of space weather operations at NOAA. “While the Sun has reached the solar maximum *******, the month that solar activity peaks on the Sun will not be identified for months or years.” Scientists will not be able to determine the exact peak of this solar maximum ******* for many months because it’s only identifiable after they’ve tracked a consistent decline in solar activity after that peak. However, scientists have identified that the last two years on the Sun have been part of this active phase of the solar cycle, due to the consistently high number of sunspots during this *******. Scientists anticipate that the maximum phase will last another year or so before the Sun enters the declining phase, which leads back to solar minimum. Since 1989, the Solar Cycle Prediction Panel — an international panel of experts sponsored by NASA and NOAA — has worked together to make their prediction for the next solar cycle. Solar cycles have been tracked by astronomers since Galileo first observed sunspots in the 1600s. Each solar cycle is different — some cycles peak for larger and shorter amounts of time, and others have smaller peaks that last longer. Sunspot number over the previous 24 solar cycles. Scientists use sunspots to track solar cycle progress; the dark spots are associated with solar activity, often as the origins for giant explosions — such as solar flares or coronal mass ejections — which can spew light, energy, and solar material out into space. For these images and more relating to solar maximum, visit [Hidden Content]. NOAA’s Space Weather Prediction Center “Solar Cycle 25 sunspot activity has slightly exceeded expectations,” said Lisa Upton, co-chair of the Solar Cycle Prediction Panel and lead scientist at Southwest Research Institute in San Antonio, Texas. “However, despite seeing a few large storms, they aren’t larger than what we might expect during the maximum phase of the cycle.” The most powerful flare of the solar cycle so far was an X9.0 on Oct. 3 (X-class denotes the most intense flares, while the number provides more information about its strength). NOAA anticipates additional solar and geomagnetic storms during the current solar maximum *******, leading to opportunities to spot auroras over the next several months, as well as potential technology impacts. Additionally, though less frequent, scientists often see fairly significant storms during the declining phase of the solar cycle. The Solar Cycle 25 forecast, as produced by the Solar Cycle 25 Prediction Panel. Sunspot number is an indicator of solar cycle strength — the higher the sunspot number, the stronger the cycle. For these images and more relating to solar maximum, visit [Hidden Content]. NOAA’s Space Weather Prediction Center NASA and NOAA are preparing for the future of space weather research and prediction. In December 2024, NASA’s Parker Solar Probe mission will make its closest-ever approach to the Sun, beating its own record of closest human-made object to the Sun. This will be the first of three planned approaches for Parker at this distance, helping researchers to understand space weather right at the source. NASA is launching several missions over the next year that will help us better understand space weather and its impacts across the solar system. Space weather predictions are critical for supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation. NASA works as a research arm of the nation’s space weather effort. To see how space weather can affect Earth, please visit NOAA’s Space Weather Prediction Center, the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. By Abbey Interrante NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Sarah Frazier, NASA’s Goddard Space Flight Center, Greenbelt, Md. *****@*****.tld About the Author Abbey Interrante Share Details Last Updated Oct 15, 2024 Related Terms Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Science Sunspots The Sun The Sun & Solar Physics Explore More 3 min read Eclipse Megamovie Coding Competition Article 5 hours ago 2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass… Article 4 days ago 2 min read Hubble Spots a Grand Spiral of Starbursts Article 4 days ago Keep Exploring Discover More Topics From NASA Sunspots Solar Storms and Flares Solar storms and flares are eruptions from the Sun that can affect us here on Earth. Sun Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… View the full article
  13. SpaceX A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from NASA’s Kennedy Space Center in Florida on Monday, Oct. 14, 2024. Europa Clipper is the first mission designed to conduct a detailed study of Jupiter’s moon Europa to determine if it currently has habitable conditions. The spacecraft will travel 1.8 billion miles (2.9 billion km) to reach Jupiter in April 2030. It will orbit Jupiter and conduct 49 close flybys of Europa. Follow Europa Clipper’s journey in NASA’s Eyes on the Solar System app. Image credit: SpaceX View the full article
  14. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A natural ****** view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.Credit: NASA NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles. Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch 1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the ********* Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission. NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime. The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.Credit: NASA/Quentin Schwinn 2. Lewis Performed Hardware Testing for the Cassini Launch One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct ******* times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch. By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles. The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff. Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.Credit: NASA/Martin Brown 3. Lewis Personnel Assisted with the Launch In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances. After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues. At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well. This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.Credit: NASA 4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and ******** in service today. While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy. So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office. The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south. Credit: NASA 5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system. Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings. Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission. NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14. Keep Exploring Read the “Sending Cassini to Saturn” Series from NASA Glenn Visit NASA’s Cassini-Huygens Website Visit the ********* Space Agency’s Cassini-Huygens Website Watch NASA Coverage of the Cassini Launch See NASA Glenn’s Historic Centaur Rocket Display Explore More 24 min read NASA Celebrates Hispanic Heritage Month 2024 Article 4 days ago 3 min read Pioneering NASA Astronaut Health Tech Thwarts Heart ******** Article 4 days ago 8 min read Kathryn Sullivan: The First ********* Woman to Walk in Space Article 5 days ago View the full article
  15. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This mosaic from ESA’s Euclid space telescope contains 260 observations in visible and infrared light. It covers 132 square degrees, or more than 500 times the area of the full Moon, and is 208 gigapixels. This is 1% of the wide survey that Euclid will capture during its six-year mission.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This section of the Euclid mosaic is zoomed in 36 times, revealing the core of galaxy cluster Abell 3381, 470 million light-years from Earth. The image, made using both visible and infrared light, shows galaxies of different shapes and sizes, including elliptical, spiral, and dwarf galaxies.ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO This image shows an area of the Euclid mosaic zoomed in 150 times. The combination of visible and infrared light reveals galaxies that are interacting with each other in cluster Abell 3381, 470 million light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO The location and actual size of the newly released Euclid mosaic is highlighted in yellow on a map of the entire sky captured by ESA’s Planck mission and a star map from ESA’s Gaia mission. ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA and the Planck Collaboration. CC BY-SA 3.0 IGO With contributions from NASA, the mission will map a third of the sky in order to study a cosmic mystery called dark energy. ESA (the ********* Space Agency) has released a new, 208-gigapixel mosaic of images taken by Euclid, a mission with NASA contributions that launched in 2023 to study why the universe is expanding at an accelerating rate. Astronomers use the term “dark energy” in reference to the unknown cause of this accelerated expansion. The new images were released at the International Astronautical Congress in Milan on Oct. 15. The mosaic contains 260 observations in visible and infrared light made between March 25 and April 8 of this year. In just two weeks, Euclid covered 132 square degrees of the southern sky — more than 500 times the area of the sky covered by a full Moon. The mosaic accounts for 1% of the wide survey Euclid will conduct over six years. During this survey, the telescope observes the shapes, distances, and motions of billions of galaxies out to a distance of more than 10 billion light-years. By doing this, it will create the largest 3D cosmic map ever made. ***** into a snippet of the great cosmic atlas being produced by the ESA Euclid mission. This video zooms in on a 208-gigapixel mosaic containing about 14 million galaxies and covering a portion of the southern sky more than 500 times the area of the full Moon as seen from Earth. Credit: ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi; ESA/Gaia/DPAC; ESA/Planck Collaboration This first piece of the map already contains around 100 million stars and galaxies. Some 14 million of these galaxies could be used by Euclid to study the hidden influence of dark energy on the universe. “We have already seen beautiful, high-resolution images of individual objects and groups of objects from Euclid. This new image finally gives us a taste of the enormity of the area of sky Euclid will cover, which will enable us to take detailed measurements of billions of galaxies,” said Jason Rhodes, an observational cosmologist at NASA’s Jet Propulsion Laboratory in Southern California who is the U.S. science lead for Euclid and principal investigator for NASA’s Euclid dark energy science team. Galaxies Galore Even though this patch of space shows only 1% of Euclid’s total survey area, the spacecraft’s sensitive cameras captured an incredible number of objects in great detail. Enlarging the image by a factor of 600 reveals the intricate structure of a spiral galaxy in galaxy cluster Abell 3381, 470 million light-years away. This section of the Euclid mosaic is zoomed in 600 times. A single spiral galaxy is visible in great detail within cluster Abell 3381, 470 million light-years away from us. Data from both the visible and infrared light instruments on Euclid are included. ESA/Euclid/Euclid Consortium/NASA, CEA Paris-Saclay, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi. CC BY-SA 3.0 IGO “What really strikes me about these new images is the tremendous range in physical scale,” said JPL’s Mike Seiffert, project scientist for the NASA contribution to Euclid. “The images capture detail from clusters of stars near an individual galaxy to some of the largest structures in the universe. We are beginning to see the first hints of what the full Euclid data will look like when it reaches the completion of the prime survey.” Visble as well are clouds of gas and dust located between the stars in our own galaxy. Sometimes called “galactic cirrus” because they look like cirrus clouds at Earth, these clouds can be observed by Euclid’s visible-light camera because they reflect visible light from the Milky Way. The mosaic released today is taste of what’s to come from Euclid. The mission plans to release 53 square degrees of the Euclid survey, including a preview of the Euclid Deep Field areas, in March 2025 and to release its first year of cosmology data in 2026. NASA’s forthcoming Nancy Grace Roman mission will also study dark energy — in ways that are complementary to Euclid. Mission planners will use Euclid’s findings to inform Roman’s dark energy work. Scheduled to launch by May 2027, Roman will study a smaller section of sky than Euclid but will provide higher-resolution images of millions of galaxies and peer deeper into the universe’s past, providing complementary information. In addition, Roman will survey nearby galaxies, find and investigate planets throughout our galaxy, study objects on the outskirts of our solar system, and more. More About Euclid Euclid is a ********* mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 ********* countries, the ******* States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme. Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech. For more information about Euclid go to: [Hidden Content] For more information about Roman, go to: [Hidden Content] News Media Contacts Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e*****@*****.tld ESA Media Relations *****@*****.tld 2024-141 Share Details Last Updated Oct 15, 2024 Related TermsEuclidAstrophysicsDark EnergyDark MatterGalaxiesJet Propulsion LaboratoryThe Universe Explore More 8 min read Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC The study of X-ray emission from astronomical objects reveals secrets about the Universe at the… Article 3 hours ago 5 min read Journey to a Water World: NASA’s Europa Clipper Is Ready to Launch Article 2 days ago 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out Article 3 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  16. NASA Administrator Bill Nelson talks to the agency’s workforce during his first State of NASA event Wednesday, June 2, 2021, at NASA Headquarters Mary W. Jackson Building in Washington. NASA/Bill Ingalls Continuing his efforts to deepen international collaboration and promote the peaceful use of space, NASA Administrator Bill Nelson will travel to Romania and Bulgaria, beginning Thursday, Oct. 17. Both countries have signed the Artemis Accords, a set of commonsense principles to commit to the peaceful exploration of space. Nelson will meet with key government and space officials in each country, including Marcel Ciolacu, Romania’s prime minister, and Rumen Radev, president of Bulgaria. In Romania, Nelson will engage with Bogdan-Gruia Ivan, minister of research, innovation and digitization, and Daniel Crunțeanu, general director of the Romanian Space Agency (ROSA). He also will visit Romanian science and technology institutions to learn about the country’s science facilities. In Bulgaria, Nelson will meet with Dr. Rosen Karadimov, minister of innovation and growth, and visit the country’s only satellite builder, which is producing satellites for organizations globally. During his travels to both countries, Nelson will discuss the importance of international partnerships and collaboration in space, including the transatlantic relationships to NASA. Nelson also will meet with students to highlight the benefits science, technology, engineering, and mathematics education and their roles as members of the Artemis Generation. For more information about NASA’s international partnerships, visit: [Hidden Content] -end- Meira Bernstein Headquarters, Washington 202-615-1747 meira.b*****@*****.tld Share Details Last Updated Oct 15, 2024 EditorRoxana BardanLocationNASA Headquarters Related TermsBill NelsonOffice of International and Interagency Relations (OIIR) View the full article
  17. Making the most of a solar eclipse demands attention to detail. Do you have what it takes? NASA’s Eclipse Megamovie project launched a new coding competition, and they need your help to organize images from the April 8, 2024 total solar eclipse. This is your chance to make a lasting contribution to solar science! The Eclipse Megamovie project asked volunteers to take photos of the total solar eclipse that took place on April 8, 2024 to discover the secret lives of solar jets and plumes. Many jets and plumes seem to disappear or change from the time they are formed on the Sun to when they move out into the solar wind. Thanks to the efforts of over 145 citizen scientists, more than 1 terabyte of photographs were collected and are now being analyzed. These images will help scientists track disappearing jets and plumes, shedding light on how these solar events impact space weather and our understanding of the Sun’s outer atmosphere. One of the standout volunteers in the Eclipse Megamovie project is Hy Tran, a citizen scientist who earned praise from the science team for his detailed feedback and mentorship of fellow volunteers. “We love working with volunteers like Hy,” said Eclipse Megamovie scientist Hannah Hellman. “They bring passion, experience, and technological knowledge to our projects.” Superstar volunteer Hy Tran helps mentor other eclipse chasers. You can join the Eclipse Megamovie project now by taking part in a coding competition! Tran’s day job is in metrology—the science of measurement (not to be confused with meteorology!). “In my professional life,” said Tran, “I support a measurement standards and calibration program, so we live by having good procedures!” He also volunteers in technical societies, focusing on standards development, engineering, and technology education. Outside of work, Hy mentors and serves as a local leader in science/technology/engineering/mathematics (STEM) outreach. He loves woodturning and dabbles in ******** astrophotography and underwater photography. The technical challenges of participating in eclipse science projects so far have hit his sweet spot. Although it will be a while until the next eclipse, the Eclipse Megamovie team still needs your help. Join volunteers like Hy and participate in their coding competition! Your mission is to create the most accurate sorting machine that categorizes a solar eclipse photograph into a specific solar eclipse phase. Not only will your code help organize the massive amounts of data collected, but you’ll also have the chance to win some prizes. Prizes for the Competition First Place: Image-stabilized binoculars with solar filters, a feature on the Eclipse Megamovie website, an Eclipse Megamovie Team Patch, a NASA calendar, an Eclipse Megamovie sticker, and a First Prize Certificate. Second and Third Place: A feature on the Eclipse Megamovie website, an Eclipse Megamovie Team Patch, a NASA calendar, an Eclipse Megamovie sticker, and a certificate. Think you’ve got the skills to tackle this challenge? Visit the Eclipse Megamovie project website to sign up today! For more information, visit the Eclipse Megamovie page at Kaggle: [Hidden Content]. Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Oct 15, 2024 Related Terms Citizen Science Eclipses Heliophysics Explore More 2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass… Article 4 days ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation Article 5 days ago 3 min read Four Asteroids Named After NASA Volunteers Article 7 days ago View the full article
  18. The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by ****** holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos. X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and ****** holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus. A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines. Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection. In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond. A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA). Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds. The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better. Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane. NASA MSFC NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy. X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula. This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program. In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house. Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world. Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly. NASA MSFC The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication. Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use. Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer. Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber. At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for. Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed. Project Leads Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC) Sponsoring Organizations The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities. Share Details Last Updated Oct 15, 2024 Related Terms Astrophysics Astrophysics Division Marshall Astrophysics Marshall Space Flight Center Science-enabling Technology Technology Highlights Explore More 2 min read Hubble Spots a Grand Spiral of Starbursts Article 4 days ago 6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus Article 6 days ago 4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball Article 6 days ago View the full article
  19. 15 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) At the end of 2022, 65 percent of the Western ******* States was in severe drought, the result of a two decades long mega drought in the Colorado River Basin that had captured headlines around the world. However, it was flooding, not drought, that was making headlines when we began our research for this story about OpenET, a revolutionary new online platform geared towards helping farmers and water managers monitor and reduce water use in watersheds where supplies were not keeping up with demand. The start of 2023 brought flooding to many counties in California, leaving 68 percent of the state with suddenly little to no drought. And caused Forrest Melton, the NASA Project Scientist for OpenET and Associate Program Manager for agriculture and water resources with the NASA Earth Action program, to pause our video interview after a tree fell down outside his Bay Area home on a rainy day in March, 2023. Coming online again after calling the ***** department, Melton didn’t seem all too optimistic that the wet conditions would last. “California tends to swing between the two extremes of drought and flood,” Melton said. He referenced the 2016/17 winter which had particularly high precipitation but was followed by dry conditions during the following years, before the relief brought by the heavy rains, and flooding, in early 2023. According to NOAA’s National Integrated Drought Information System it will take more than one wet winter to replenish groundwater in many parts of the western ******* States. Groundwater levels across the California Central Valley and many parts of the Ogallala Aquifer continue to decline. The need for better water management ******** essential, and yet the data necessary to support new approaches has not been broadly available. Enter the OpenET project, a multi-disciplinary, collaborative effort to make satellite-based evapotranspiration (ET) data available to the public. Melton describes the project as providing invaluable and scientifically robust data at all scales, “that can be used to support day to day decision making and long range planning to try to solve some really long standing and important water management challenges in the West.” What is Evapotranspiration? Evapotranspiration is the combined process of evaporation and transpiration, both of which transfer water from the land surface to the atmosphere as water vapor. Evaporation transforms water from the surface of the ground or bodies of water into water vapor, while transpiration is water vapor that is evaporated from plant tissues and escapes through the stomata, the tiny pores in plant leaves and stems. It is a process that is happening all around us almost all the time, but because water vapor is invisible to the human eye, it is very hard to measure on the ground. A conceptual diagram of near-surface hydrology.M. W. Toews To understand the effect evapotranspiration has on a local water cycle, picture a large decorative fountain. Typically, these fountains recycle the same water over and over. As a fountain runs, water is pumped out of the fountain heads, falls back into the fountain’s basin, and then flows back through the pipe system before starting the process all over again. We can think of the water remaining within this fountain’s local water system as non-consumptive water use. Some water, however, will be lost from the fountain’s local water system by evaporating from the pool’s surface or mist from the fountain’s spray. Imagine the fountain also has lily pads growing in its basin. The lily pads will use the fountain’s water to survive and grow, losing some of that water to transpiration. The total water lost is evapotranspiration, and is considered consumptive water use, because it cannot be reused by the fountain. Tracking evapotranspiration can tell you how much water is removed or “depleted” from a local water system, and how much water needs to be added back in to support plant growth and maintain a healthy balance between water supply and water use. If too much water leaves the fountain, it will stop running. If too much water is added, it will overflow. These concepts can be applied more broadly to the hydrologic cycle as a whole, and evapotranspiration data can play an important part in designing and implementing sustainable water management practices to combat larger issues like drought, as well as both short and long-term reductions in water availability. Historically, ET data have been obtained from ground-based instruments and methods, such as weighing lysimeters, which weigh soil and plants to track the water volume lost by evaporation or transpiration. Another common method is called eddy covariance, which calculates the amount of water vapor transported away from the land surface by wind eddies as they move across the land surface. But both are expensive and difficult to install and maintain, and measurements are only representative of a small portion of an individual agricultural field. It is cost prohibitive to collect these measurements over larger areas. What makes OpenET different? The OpenET team saw the important niche left open by traditional evapotranspiration measurement methods and filled it. They built upon decades of research funded by NASA, USDA and USGS and developed a new platform that can take easily accessible and already available data from satellite programs, like Landsat, and combine it with weather data to calculate the ET for every quarter acre of land. Satellites can record information like the Earth’s surface temperature and how much of the incoming light from the sun is being reflected back out to space. OpenET is able to use physically-based mathematical models to combine the satellite and weather data and output accurate data on evapotranspiration rates and volumes. This information is then made easily accessible through OpenET’s Data Explorer, a free web-based tool that allows anyone with an internet connection to access the data OpenET provides. Users begin by selecting an area of interest from a map of the western ******* States that provides data at the satellite resolution of a quarter-acre, and also broken down into known areas of interest and individual agricultural fields, each ****** coded with a heat map of evapotranspiration. Cooler colors indicate higher rates of evapotranspiration while warmer colors indicate lower rates. Users can zoom into specific areas on the map, and with just a click, a chart pops up showing the evapotranspiration trends for a given area, for the current year and the past five years. The chart can show monthly ET trends, useful for understanding seasonal fluctuations, and also cumulative trends, useful for understanding year-to-year changes in evapotranspiration. “The OpenET team took a user-driven design approach from the beginning, and each element of the Data Explorer and the open data services is there because a water manager or farmer asked for it,” Melton explained. As we played around with the map, it became apparent how much work was put into developing this project. Scientists needed to improve models and assess the accuracy of data, programmers had to develop the user interface and data services, designers needed to make the interface intuitive enough to be impactful, agriculture and environmental groups needed to help validate the model’s accuracy, and users of all types needed to provide requirements and then test the product to make sure their needs were actually met. The OpenET consortium includes NASA, USGS, USDA Agricultural Research Service (ARS), Environmental Defense Fund (EDF), Google Earth Engine, California State University Monterey Bay (CSUMB), Desert Research Institute (DRI), Habitat Seven, Chapman University, Cornell University, University of Nebraska-Lincoln and close to a dozen other universities and experts across the U.S. NASA Ames Research Center and CSUMB have played key roles in the scientific and technical leadership of the effort from the outset, working closely with DRI, EDF and the recently formed non-profit OpenET, Inc. In addition, over 100 partners from the water management, agriculture and conservation community provided user requirements and assisted with the design and testing of the OpenET platform and tools. “OpenET would not be possible without the contributions of each one of those partners,” Melton said. “Both on the implementation side and those who are translating the data from OpenET into solutions to long standing challenges.” Map of farmlands showing ET data for 2024. The cooler colors represent higher levels of evapotranspiration (ET), while warmer colors indicate areas with less ET.OpenET Models like those built into OpenET can be extremely useful tools for understanding patterns in ET and water use, but are only helpful if their accuracy is known. The OpenET science team recently completed the largest accuracy assessment to date for field-scale satellite-based ET data, comparing the satellite data to ground-based measurements at more than 150 sites across the U.S. Led by John Volk of the Desert Research Institute, the study was published in Nature Water earlier this year. A key finding was that across all sites, an ensemble value computed from six different ET models performed the best overall, leveraging the strengths of each individual satellite-driven model. However, the study also found that some models performed best for particular crop types or regions, which is important information for water managers and farmers who need the most accurate data possible. Publishing the results as an open access study with all data and analysis made publicly available was also important to build trust in the data. While the study highlighted some limitations of the models and priorities for future research, the rigorous and reproducible accuracy assessment helps to build user confidence that they can use the data, while being aware of the expected accuracy for different applications of the data. Bridging the Gap Between Farmers and Resource Managers OpenET has already contributed to one significant win for farmers that affects how water use will be monitored and reported in the Sacramento-San Joaquin Delta. This inland river delta covers 750,000 acres and is an important water resource in California, but one where accelerated demand combined with habitat loss and water quality issues has led to major concerns. In the Delta, large portions of the agricultural land are below sea level. Levees protect the fields and contain the river channels that supply water for irrigation. In 2023, the state began requiring farmers to maintain a water meter or measuring device on each diversion, where water is diverted from a river for irrigation. However, this measurement proved challenging and costly as there are thousands of diversions in the Delta, and the measuring equipment was inaccurate and difficult to maintain in this environment. In addition, water users also had to pay for meters at the locations where water that drained from the fields was pumped back over the levees and into the river channels. The Sacramento-San Joaquin River Delta is a major water resource in California.Matthew Trump “Mostly, what the state was interested in was the consumptive use: how much (water) was actually removed from the supply in that region,” Melton said. “So, it’s the perfect place for using OpenET because evapotranspiration really is the majority of the consumptive use in the Delta, if not all of it.” After the launch of OpenET, farmers in the Delta worked with the Delta Watermaster, the California State Water Resources Control Board, the OpenET team and the Delta Measurement Consortium to develop an alternative compliance plan that used OpenET data to help streamline the water use required reporting for this complex region. Once the alternative compliance plan was approved, Forrest Melton and Will Carrara of NASA worked with the state Water Resources Control Board, the Delta Watermaster and water management agencies, and Jordan Harding of HabitatSeven to implement this solution. The Delta Alternative Compliance Plan, also known as the Delta ACP, allows farmers to use OpenET data to estimate their water usage; enabling farmers to complete their use reports in a matter of minutes. “It’s the first time that satellite-based evapotranspiration data has been automatically integrated with a state-managed water reporting system,” Melton said. Last year, more than 70% of farmers in the Bay-Delta region chose to use OpenET and to report their water use through the Delta ACP website, and they expect this percentage to continue to increase over time. “The best part is that it is saving farmers hundreds of hours on preparing and submitting reports, avoiding millions of dollars in costs for farmers to deploy and maintain meters, and giving the state consistent and reproducible data on water use that has been reviewed and approved by the water user,” Melton said. According to Delta Watermaster, Jay Ziegler, this approach has a clear benefit in the unique water flow setting of the Delta. “In reality, OpenET – and the use of publicly accessible data measuring ET is the only way to really discern consumptive use of water in the Delta on a reliable basis,” Ziegler said. “Candidly, we don’t really have a viable “plan B” in the absence of applying Open ET for water use reporting.” In reality, OpenET – and the use of publicly accessible data measuring ET is the only way to really discern consumptive use of water in the Delta on a reliable basis. Jay ziegler Sacramento-San Joaquin Delta Watermaster Water Beyond Borders As water scarcity is increasingly becoming an urgent issue all around the world, it’s easy to imagine how many countries could benefit from OpenET data. OpenET’s first international partnership is led by Anderson Ruhoff, a professor in Hydrology and Remote Sensing at the Federal University of Rio Grande do Sul, Brazil, where his team developed an evapotranspiration model called geeSEBAL for Brazil’s Water Agency. Ruhoff learned about OpenET while he was in the US on a visiting professorship in Nebraska. He was intrigued and reached out to Melton who encouraged him to attend an upcoming conference in Reno, Nevada, where OpenET would be featured. The conference was due to start in just a few days time. “So I had to find a last minute ticket to Reno and I’m glad I bought it, because when I arrived there they invited me to join Open ET. It was quite a coincidence,” Ruhoff said, smiling as he remembered the spontaneous decision. “We adapted our model for the US and started to participate in their work.” In March, 2024, Ruhoff and OpenET launched an extension of the tool, called OpenET Brazil, with financial support from the Agência Nacional de Águas e Saneamento Básico (ANA), the Brazilian national water agency. The tool, called OpenET Brazil, will have similar goals as OpenET in the U.S., and the data collected will help improve Open ET’s accuracy overall. Melton feels this will be a “great test case” for both working with new environmental conditions (in Brazil there frequently is more cloud cover than in the US during key parts of the growing season) and also developing new collaborations. “The partnership will help us figure out how we can work with international partners to make the ET data useful,” Melton said. “The key aspect of our approach to geographic expansion is that leading scientists in each country and region, like Dr. Ruhoff, will lead the implementation, accuracy assessment, and the development of applications and partnerships for their country.” Brazil has one of the world’s largest sources of freshwater, the Amazon River, and yet it can still be affected by drought. This is partly due to the fact that deforestation in the Amazon Rainforest has an impact on the entire region’s water cycle. Trees draw water up from the soil and during photosynthesis they release vapor into the atmosphere. This water vapor will accumulate and form precipitation. Trees are “basically a huge water pump,” Ruhoff said, and the Amazon Rainforest is large enough that it helps to produce the rainy season. But when deforestation is allowed to happen over large areas, that mechanism is interrupted. As a result of this disruption, the dry season is predicted to intensify, becoming longer and dryer, which in turn can affect crop production in Brazil as well as the rainfall that is critical for sustaining water supplies in Brazil and other areas of South America. “Water doesn’t see borders. It doesn’t follow our rules,” Ruhoff said. “Deforestation in one place can affect people thousands of kilometers away.” Water doesn’t see borders. It doesn’t follow our rules. Deforestation in one place can affect people thousands of kilometers away. Anderson Ruhoff Professor of Hydrology and Remote Sensing, Federal University of Rio Grande do Sul, Brazil Studying evapotranspiration can reveal the impacts of deforestation with even more clarity. And importantly, it’s also public information. “So not only the farmers and water managers but every citizen can check how much water is being used in their area, especially during drought. It’s democratic information in that way,” Ruhoff said. “I think it’s important to have this information openly available and to try and reach as many people as possible.” Melton feels there’s the potential to expand the project, if more people like Ruhoff are there to lead the way. “There’s huge potential, but there do need to be stakeholders that come to the table and say that this is something that they’re interested in,” Melton said. “Water is so important and at times so contentious that it’s really important the data is seen as trusted. When there is a local leader, that substantially increases the likelihood that it will be trusted, and most importantly, used to bring people together to develop solutions.” The geeSEBAL application that Anderson Ruhoff’s team developed, which now informs the OpenET platform. Science Direct/Anderson Ruhoff Even when you live in a water-scarce region like California it’s easy to take water for granted. What platforms like OpenET can do for us, however, is make water, even in its most diffuse form, more visible to everyone. Written by Jane Berg and Rachel Sender, co-published with the Bay Area Environmental Research Institute To learn more about OpenET, visit [Hidden Content] Program Contact: Forrest Melton NASA Ames Research Center *****@*****.tld Share Details Last Updated Oct 14, 2024 Related TermsGeneralEarth ScienceEarth Science Division Explore More 3 min read NASA Activates Resources to Help Assess Impacts from Hurricane Milton Article 2 days ago 1 min read RCRA Permit Modification Article 3 days ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument Article 4 days ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  20. A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. After launch, the spacecraft plans to fly by Mars in February 2025, then back by Earth in December 2026, using the gravity of each planet to increase its momentum. With help of these “gravity assists,” Europa Clipper will achieve the velocity needed to reach Jupiter in April 2030.Credit: NASA/Kim Shiflett NASA’s Europa Clipper has embarked on its long voyage to Jupiter, where it will investigate Europa, a moon with an enormous subsurface ocean that may have conditions to support life. The spacecraft launched at 12:06 p.m. EDT Monday aboard a SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. The largest spacecraft NASA ever built for a mission headed to another planet, Europa Clipper also is the first NASA mission dedicated to studying an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) on a trajectory that will leverage the power of gravity assists, first to Mars in four months and then back to Earth for another gravity assist flyby in 2026. After it begins orbiting Jupiter in April 2030, the spacecraft will fly past Europa 49 times. “Congratulations to our Europa Clipper team for beginning the first journey to an ocean world beyond Earth,” said NASA Administrator Bill Nelson. “NASA leads the world in exploration and discovery, and the Europa Clipper mission is no different. By exploring the unknown, Europa Clipper will help us better understand whether there is the potential for life not just within our solar system, but among the billions of moons and planets beyond our Sun.” Approximately five minutes after liftoff, the rocket’s second stage fired up and the payload fairing, or the rocket’s nose cone, opened to reveal Europa Clipper. About an hour after launch, the spacecraft separated from the rocket. Ground controllers received a signal soon after, and two-way communication was established at 1:13 p.m. with NASA’s Deep Space Network facility in Canberra, Australia. Mission teams celebrated as initial telemetry reports showed Europa Clipper is in good health and operating as expected. “We could not be more excited for the incredible and unprecedented science NASA’s Europa Clipper mission will deliver in the generations to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Everything in NASA science is interconnected, and Europa Clipper’s scientific discoveries will build upon the legacy that our other missions exploring Jupiter — including Juno, Galileo, and Voyager — created in our search for habitable worlds beyond our home planet.” The main goal of the mission is to determine whether Europa has conditions that could support life. Europa is about the size of our own Moon, but its interior is different. Information from NASA’s Galileo mission in the 1990s showed strong evidence that under Europa’s ice ***** an enormous, salty ocean with more water than all of Earth’s oceans combined. Scientists also have found evidence that Europa may host organic compounds and energy sources under its surface. If the mission determines Europa is habitable, it may mean there are more habitable worlds in our solar system and beyond than imagined. “We’re ecstatic to send Europa Clipper on its way to explore a potentially habitable ocean world, thanks to our colleagues and partners who’ve worked so hard to get us to this day,” said Laurie Leshin, director, NASA’s Jet Propulsion Laboratory in Southern California. “Europa Clipper will undoubtedly deliver mind-blowing science. While always bittersweet to send something we’ve labored over for years off on its long journey, we know this remarkable team and spacecraft will expand our knowledge of our solar system and inspire future exploration.” In 2031, the spacecraft will begin conducting its science-dedicated flybys of Europa. Coming as close as 16 miles (25 kilometers) to the surface, Europa Clipper is equipped with nine science instruments and a gravity experiment, including an ice-penetrating radar, cameras, and a thermal instrument to look for areas of warmer ice and any recent eruptions of water. As the most sophisticated suite of science instruments NASA has ever sent to Jupiter, they will work in concert to learn more about the moon’s icy shell, thin atmosphere, and deep interior. To power those instruments in the faint sunlight that reaches Jupiter, Europa Clipper also carries the largest solar arrays NASA has ever used for an interplanetary mission. With arrays extended, the spacecraft spans 100 feet (30.5 meters) from end to end. With propellant loaded, it weighs about 13,000 pounds (5,900 kilograms). In all, more than 4,000 people have contributed to Europa Clipper mission since it was formally approved in 2015. “As Europa Clipper embarks on its journey, I’ll be thinking about the countless hours of dedication, innovation, and teamwork that made this moment possible,” said Jordan Evans, project manager, NASA JPL. “This launch isn’t just the next chapter in our exploration of the solar system; it’s a leap toward uncovering the mysteries of another ocean world, driven by our shared curiosity and continued search to answer the question, ‘are we alone?’” More About Europa Clipper Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. Managed by Caltech in Pasadena, California, NASA JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with NASA JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft. Find more information about NASA’s Europa Clipper mission here: [Hidden Content] -end- Meira Bernstein / Karen Fox Headquarters, Washington 202-358-1600 meira.b*****@*****.tld / *****@*****.tld Gretchen McCartney Jet Propulsion Laboratory, Pasadena, Calif. 818-287-4115 gretchen.p*****@*****.tld Share Details Last Updated Oct 14, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsEuropa ClipperEuropaJet Propulsion LaboratoryJupiterJupiter MoonsKennedy Space Center View the full article
  21. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Felipe Valdez, a NASA engineer at Armstrong Flight Research Center’s Dale Reed Subscale Flight Research Laboratory, stands next to a subscale model of the Hybrid Quadrotor (HQ-90) aircraft. NASA / Charles Genaro Vavuris Felipe Valdez is someone who took advantage of every possible opportunity at NASA, working his way from undergraduate intern to his current job as a flight controls engineer. Born in the ******* States but raised in Mexico, Valdez faced significant challenges growing up. “My mom worked long hours, my dad battled addiction, and eventually, school became unaffordable,” Valdez said. Determined to continue his education, Valdez made the difficult choice to leave his family and return to the U.S. But as a teenager, learning English and adapting to a new environment was a culture shock for him. Despite these changes, his curiosity for subjects such as math and science never wavered. “As a ****, I’d always been good with numbers and fascinated by how things worked. Engineering combined both,” Valdez said. “This sparked my interest.” While he pursued an undergraduate degree in mechanical engineering from California State University, Sacramento, guidance from his professor, Jose Granda, proved to be pivotal. “He encouraged me to apply for a NASA internship,” Valdez said. “He’d actually been a Spanish-language spokesperson for a [space] shuttle mission, so hearing about someone with my background succeed gave me the confidence I needed to take that step.” Valdez’s hard work paid off – he was selected as a NASA Office of STEM Engagement intern at the agency’s Johnson Space Center in Houston. There, he worked on software development for vehicle dynamics, actuators, and controller models for a space capsule in computer simulations. “I couldn’t believe it,” Valdez said. “Getting that opportunity changed everything.” This internship opened the door to a second with NASA this time at the agency’s Armstrong Flight Research Center in California. He had the chance to work on flight computer development for the Preliminary Research Aerodynamic Design to Lower Drag, an experimental flying wing design. After these experiences, he was later accepted as an intern for NASA’s Pathways Program, a work-study program that offers the possibly of full-time employment at NASA after graduation. “That was the start of my career at NASA, where my passion for aeronautics really took off,” he said. Valdez was the first in his family to pursue higher education, earning his bachelor’s degree from Sacramento State and his master’s in mechanical and aerospace engineering from the University of California, Davis. Today, he works as a NASA flight controls engineer under the Dynamics and Controls branch at Armstrong. Most of his experience has focused on flight simulation development and flight control design, particularly for distributed electric propulsion aircraft. “It’s rewarding to be part of a group that’s focused on making aviation faster, quieter, and more sustainable,” Valdez said. “As a controls engineer, working on advanced aircraft concepts like distributed electric propulsion allows me design algorithms to directly control multiple motors, enhancing safety, controllability, and stability, while enabling cleaner, and quieter operations that push the boundaries of sustainable aviation.” Throughout his career, Valdez has remained proud of his heritage. “I feel a strong sense of pride knowing that inclusion is one of our core values, opportunities are within reach for anyone at NASA.” Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read A Serendipitous NASA Family Reunion Article 1 day ago 2 min read Una reunión familiar de la NASA por casualidad Article 1 day ago 24 min read NASA Celebrates Hispanic Heritage Month 2024 Article 3 days ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Oct 13, 2024 EditorJim BankeContactJessica Arreola*****@*****.tldLocationArmstrong Flight Research Center Related TermsAeronauticsArmstrong Flight Research CenterHispanic Heritage Month View the full article
  22. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images This image shows just how variable and interesting the terrain is in the area that NASA’s Mars rover Curiosity is currently investigating. Curiosity captured this long-distance Remote Micro Imager (RMI) image using the Chemistry & Camera (ChemCam) aboard the rover on sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024 at 02:30:12 UTC. NASA/JPL-Caltech/LANL Earth planning date: Friday, Oct. 11, 2024 This blogger is in the ******* Kingdom, just north of London, where we yesterday had beautiful night skies with a red aurora that was even visible with the unaided eye, and looked stunning on photographs. That reminded me of the solar storm that made it all the way to Mars earlier this year. Here is my colleague Deborah’s blog about it: “Aurora Watch on Mars.” And, of course, that was a great opportunity to do atmospheric science and prepare for future crewed missions, to assess radiation that future astronauts might encounter. You can read about it in the article, “NASA Watches Mars Light Up During Epic Solar Storm.” But now, back from shiny red night skies north of London, and auroras on Mars six months ago, to today’s planning! Power — always a negotiation! Today, I was the Science Operations Working Group chair, the one who has to watch for the more technical side of things, such as the question if all the activities will fit into the plan. Today there were many imaging ideas to capture the stunning landscape in detail with Mastcam and very close close-ups with the long-distance imaging capability of ChemCam (RMI). Overall, we have two long-distance RMIs in the plan to capture the details of the ridge we are investigating. You can see in the accompanying image an example from last sol of just how many stunning details we can see. I so want to go and pick up that smooth white-ish looking rock to find out if it is just the light that makes it so bright, or if the surface is different from the underside… but that’s just me, a mineralogist by training, used to wandering around a field site! Do you notice the different patterns — textures as we call them in geology — on the rocks to the left of that white-ish rock and the right of it? So much stunning detail, and we are getting two more RMI observations of 10 frames each in today’s plan! In addition there are more than 80 Mastcam frames planned. Lots of images to learn from! Chemistry is also featuring in the plan. The rover is stable on its wheels, which means we can get the arm out and do an APXS measurement on the target “Midnight Lake,” which MAHLI also images. The LIBS investigations are seconding the APXS investigation on Midnight Lake, and add another target to the plan, “Pyramidal Pinnacle.” On the third sol there is an AEGIS, the LIBS measurement where the rover picks its own target before we here on Earth even see where it is! Power was especially tight today, because the CheMin team does some housekeeping, in particular looking at empty cells in preparation for the next drill. The atmosphere team adds many investigations to look out for dust devils and the dustiness of the atmosphere, and APXS measures the argon content of the atmosphere. This is a measure for the seasonal changes of the atmosphere, as argon is an inert gas that does not react with other components of the atmosphere. It is only controlled by the temperature in various places of the planet — mainly the poles. DAN continues to monitor water in the subsurface, and RAD — prominently featured during the solar storm I was talking about earlier — continues to collect data on the radiation environment. Let’s close with a fun fact from planning today: During one of the meetings, the rover drivers were asked, “Are you driving backwards again?” … and the answer was yes! The reason: We need to make sure that in this rugged terrain, with its many interesting walls (interesting for the geologists!), the antenna can still see Earth when we want to send the plan. So the drive on sol 4332 is all backwards. I am glad we have hazard cameras on the front and the back of the vehicle! Written by Susanne Schwenzer, Planetary Geologist at The Open University Share Details Last Updated Oct 13, 2024 Related Terms Blogs Explore More 3 min read Sols 4329-4330: Continuing Downhill Article 2 days ago 3 min read Sols 4327-4328: On the Road Again Article 4 days ago 3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  23. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A SpaceX Falcon Heavy rocket with the Europa Clipper spacecraft aboard is seen at Launch Complex 39A as preparations continue for the mission, Sunday, Oct. 13, at NASA’s Kennedy Space Center in Florida. NASA Find details about the launch sequences for the orbiter, which is targeting an Oct. 14 liftoff on its mission to search for ingredients of life at Jupiter’s moon Europa. In less than 24 hours, NASA’s Europa Clipper spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida aboard a Falcon Heavy rocket. Its sights are set on Jupiter’s ice-encased moon Europa, which the spacecraft will fly by 49 times, coming as close as 16 miles (25 kilometers) from the surface as it searches for ingredients of life. Launch is set for 12:06 p.m. EDT on Monday, Oct. 14, with additional opportunities through Nov 6. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur. Plans to launch Europa Clipper on Oct. 10 were delayed due to impacts of Hurricane Milton. NASA’s Europa Clipper is the first mission dedicated to studying Jupiter’s icy moon Europa, one of the most promising places in our solar system to find an environment suitable for life outside of Earth. With its massive solar arrays extended, Europa Clipper could span a basketball court (100 feet, or 30.5 meters, tip to tip). In fact, it’s the largest spacecraft NASA has ever built for a planetary mission. The journey to Jupiter is a long one — 1.8 billion miles (2.9 billion kilometers) — and rather than taking a straight path there, Europa Clipper will loop around Mars and then Earth, gaining speed as it swings past. The spacecraft will begin orbiting Jupiter in April 2030, and in 2031 it will start making those 49 science-focused flybys of Europa while looping around the gas giant. The orbit is designed to maximize the science Europa Clipper can conduct and minimize exposure to Jupiter’s notoriously intense radiation. But, of course, before any of that can happen, the spacecraft has to leave Earth behind. The orbiter’s solar arrays are folded and stowed for launch. Testing is complete on the spacecraft’s various systems and its payload of nine science instruments and a gravity science investigation. Loaded with over 6,060 pounds (2,750 kilograms) of the propellant that will get Europa Clipper to Jupiter, the spacecraft has been encapsulated in the protective nose cone, or payload fairing, atop a SpaceX Falcon Heavy rocket, which is poised for takeoff from historic Launch Complex 39A. Launch Sequences The Falcon Heavy has two stages and two side boosters. After the side boosters separate, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Europa Clipper escape Earth’s gravity, will ***** its engine. Technicians encapsulated NASA’s Europa Clipper spacecraft inside payload fairings on Wednesday, Oct. 2, at NASA’s Kennedy Space Center in Florida. The fairings will protect the spacecraft during launch as it begins its journey to explore Jupiter’s icy moon Europa. NASA/Ben Smegelsky Once the rocket is out of Earth’s atmosphere, about 50 minutes after launch, the payload fairing will separate from its ride, split into two halves, and fall safely back to Earth, where it will be recovered and reused. The spacecraft will then separate from the upper stage about an hour after launch. Stable communication with the spacecraft is expected by about 19 minutes after separation from the rocket, but it could take somewhat longer. About three hours after launch, Europa Clipper will deploy its pair of massive solar arrays, one at a time, and direct them at the Sun. Mission controllers will then begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected. While Europa Clipper is not a life-detection mission, it will tell us whether Europa is a promising place to pursue an answer to the fundamental question about our solar system and beyond: Are we alone? Scientists suspect that the ingredients for life — water, chemistry, and energy — could exist at the moon Europa right now. Previous missions have found strong evidence of an ocean beneath the moon’s thick icy crust, potentially with twice as much liquid water as all of Earth’s oceans combined. Europa may be home to organic compounds, which are essential chemical building blocks for life. Europa Clipper will help scientists confirm whether organics are there, and also help them look for evidence of energy sources under the moon’s surface. This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit at Jupiter as it passes over the gas giant’s icy moon Europa (lower right). Scheduled to arrive at Jupiter in April 2030, the mission will be the first to specifically target Europa for detailed science investigation. NASA/JPL-Caltech More About Europa Clipper Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet. Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Marshall Space Flight Center in Huntsville, Alabama; and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy. Find more information about Europa here: europa.nasa.gov 8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place Get the Europa Clipper Press Kit News Media Contacts Meira Bernstein / Karen Fox NASA Headquarters, Washington 202-358-1600 meira.b*****@*****.tld / *****@*****.tld Gretchen McCartney Jet Propulsion Laboratory, Pasadena, Calif. 818-287-4115 gretchen.p*****@*****.tld 2024-139 Share Details Last Updated Oct 13, 2024 Related TermsEuropa ClipperAstrobiologyEuropaJet Propulsion LaboratoryJupiterJupiter Moons Explore More 6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out Article 16 hours ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument Article 3 days ago 5 min read Does Distant Planet Host Volcanic Moon Like Jupiter’s Io? Article 3 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  24. Credit: NASA While in Milan for international meetings, NASA Administrator Bill Nelson was among the witnesses as Estonia signed the Artemis Accords and became the 45th nation to join the ******* States and other signatories agreeing to the safe, transparent, and responsible exploration of the Moon, Mars, and beyond. The signing ceremony took place ahead of Italy hosting the 75th International Astronautical Congress beginning Monday, Oct. 14, where government and space officials from signatory countries will discuss advancing implementation of the Artemis Accords, among other topics. “We welcome Estonia’s signing of the Artemis Accords, which will open the door for more international collaboration,” said Nelson. “This decision also strengthens our family of nations, ******* by a common cause, and builds on our commitment to explore space for the benefit of humanity under the sound principles of the accords.” Erkki Keldo, Estonia’s minister of economy and industry, signed the Artemis Accords. Rahima Kandahari, deputy assistant secretary for the U.S. State Department and Lisa Campbell, CSA (********* Space Agency) president, also participated in the event. “Estonia is well known as the leading country in e-governance, and it is a great honor for us to enter a next level in space exploration, said Keldo. “We are more than interested to share our knowledge with the global space community to make future collaboration in space exploration a success for humankind. I am sure that joining the Artemis Accords will open attractive opportunities to Estonian enterprises too, to share their valuable knowledge and competences.” In 2020, the ******* States and seven other nations were the first to sign the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming weeks and months. Learn more about the Artemis Accords at: [Hidden Content] -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b*****@*****.tld / *****@*****.tld Share Details Last Updated Oct 13, 2024 EditorJennifer M. DoorenLocationNASA Headquarters Related Termsartemis accordsOffice of International and Interagency Relations (OIIR) View the full article
  25. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Yomayra Cruz-Diaz, technical project coordinator at NASA Langley with her son, ******* Martinez-Cruz. Martinez-Cruz is serving in the ******* States Marine Corps and is stationed at Marine Corps Air Station Miramar.NASA / Jessica Arreola Growing up in Puerto Rico, Yomayra Cruz-Diaz didn’t imagine that one day she would work at NASA. Today, she serves as technical project coordinator at NASA’s Langley Research Center in Virginia, supporting its Aeronautics Research Directorate. Cruz-Diaz’s position requires her to travel in support of public engagement events and recently she supported NASA’s presence at the Miramar Airshow in San Diego, California where the agency’s booth featured Spanish-language STEM materials. Something, or rather, someone, made this event especially unique for Cruz-Diaz: Her son, ******* Martinez-Cruz, is currently serving in the ******* States Marine Corps and is stationed at Marine Corps Air Station Miramar. In a ******* of serendipity, they were both working the same event for their respective employers. Living on opposite sides of the country, they hadn’t seen each other in person for nearly a year. With surprise and joy, they hugged. Growing up in a Puerto Rican household, conversations about core values revolved around family, Martinez-Cruz said. He recalled seeing his mom work at NASA and feeling inspired by her work ethic. That level of commitment ran in the family. “******* and I would carpool,” she said. “He would drop me off at Langley and then he would go on his way to his aircraft mechanic school.” Martinez-Cruz serves as an air traffic controller, work that Cruz-Diaz knew about but had never seen in person. “He’s explained to me what his job entails but taking a tour of his job site gives me a whole new understanding,” she said after a tour of the air traffic control tower. NASA is proud to celebrate National Hispanic Heritage Month, the annual observance honoring the wide and rich histories, cultures, and contributions of the Hispanic and Latino community. In the words of NASA Administrator Bill Nelson, “Adelante y hacia arriba,” or “Onward and upward!” Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read Una reunión familiar de la NASA por casualidad Article 17 mins ago 24 min read NASA Celebrates Hispanic Heritage Month 2024 Article 2 days ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space… Article 3 days ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Oct 12, 2024 EditorJim BankeContactJessica Arreola*****@*****.tldLocationNASA Langley Research Center Related TermsAeronauticsHispanic Heritage MonthLangley Research Center View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.