7 Min Read
Spectral Energies is a NASA SBIR/STTR-Funded Tech that Could Change the Way We Fly
City scape of New York City at sunrise with multiple airplanes and other flying vehicles.
Credits:
NASA SBIR/STTR
Editor Note: Article written by Nicholas Mercurio
With $20 million in commercial sales and $15 million in sales to government agencies, *********-owned small business Spectral Energies, based in Beavercreek, Ohio, has found a customer base for its pulse-burst laser systems. NASA has played a significant role in developing the technology through the Small Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR) program. With wide-ranging applications including metrology to support commercial aircraft certification, as well as material processing, this technology could pave the way for new forms of passenger aircraft.
The High Cost of Aircraft Certification
Did you know that the Boeing 737 first entered service in 1968? Yet there’s a good chance that, if you’ve flown recently, it was on a Boeing 737. That’s due in large part to the cost of certifying new airplanes, which can range in the hundreds of millions of dollars. One place to look for cost savings is the testing process.
When testing a new design for a space vehicle or commercial aircraft, researchers use wind tunnels to simulate flight conditions. The new aircraft or aircraft component—such as a new wing design—is built, put inside the wind tunnel, and evaluated.
NASA has long sought to develop robust modeling and prediction software to significantly reduce the need for wind tunnel testing and expensive flight testing. Such software would allow initial analysis to be done on a computer model to identify performance improvement opportunities and iterate on designs, saving the actual manufacturing and its associated costs for a design much closer to being final. Innovations in laser measurement systems could finally bring this goal within reach.
The Limitations of Traditional Lasers and Early Pulse-Burst Laser Systems
Entering into use in the 1980s and still widely used today, traditional commercial laser systems operate at 10 Hz, meaning they can ***** 10 times per second into the air moving around an aircraft in a wind tunnel. This essentially provides a “photograph” of the air flow at that moment.
But a tenth of a second is a long time, especially when NASA wind tunnels can test vehicles at up to ten times the speed of sound. In a tenth of a second, the pocket of air from the previous image has long since moved on, meaning the second image is capturing something completely different than the first and crucial data is lost.
Why is this data crucial? Because when an aircraft has stalled, it’s the air flow—how the air moves over, under, and around the aircraft—that matters. This air flow changes rapidly in time, leading to effects like stall and buffet; measurement techniques need to be able to capture these rapid changes. Without a complete, data-backed understanding of air flow moment to moment, efforts to develop accurate modeling software have stalled.
In the late 1990s, pulse-burst laser systems came onto the scene and delivered a dramatic increase in measurement speed. These systems—developed in part with support from the NASA SBIR program—went from producing a set of photograph-like images to delivering a movie-like sequence of data. However, these early systems were difficult to transport and operate, significantly limiting their use.
NASA SBIR/STTR phasesCredits: NASA SBIR/STTR
Enhancing Usability with Air Force SBIR Funding
By providing funding to develop early-stage technologies, the NASA SBIR/STTR program helps de-risk and develop ideas, maturing them to the point where others can continue innovating. More than a decade after helping to fund some of the earliest pulse-burst laser systems, NASA awarded Phase I SBIR funding to Spectral Energies in 2009 for further advancement of the technology.
The firm went on to receive Phase II and Phase III SBIR funding from the U.S. Air Force, leveraging these awards to create a commercial pulse-burst laser system that was smaller, easier to transport, more resilient and reliable, and simpler to operate due to significant software advancements. Air Force funding also enabled Spectral Energies to demonstrate several new applications of the system in combustion environments.
With this foundational work in place, the technology was ready for further innovation to help NASA pursue its long-held goal of more effective air flow measurement and modeling.
Spectral Energies work with the NASA SBIR/STTR program
Spectral Energies resumed its work with the NASA SBIR/STTR program in 2014 with multiple Phase I awards. Through continuing program awards, including three Phase II Extended (II-E) and three Phase III contracts, the firm added new capabilities to its pulse-burst laser system, such as high-speed two-****** thermometry, demonstrated in 2020.
Previously, two-****** thermometry was typically done at 10 Hz speeds with two lasers and two cameras. Spectral Energies worked with NASA to develop this capability at high-speed using their single-laser, single-camera system, thereby enabling three- and four-dimensional (i.e., three spatial coordinates and time) temperature measurement of chemical flows, a critical capability when designing new chemical propulsion systems.
Further collaboration with NASA yielded additional capabilities in high-speed picosecond velocimetry and two-dimensional ultraviolet spectroscopy and imaging. Adding these measurement techniques to its technology allowed Spectral Energies to make commercial inroads into hypersonic wind tunnel testing, material processing, and defense applications. Rather than modifying the pulse-burst laser system to deliver these capabilities, each enhancement took the form of an add-on that could be attached to the system, similar to how you can add apps to your smart phone or attach a new lens to your camera. These NASA SBIR-funded add-ons have increased the return on investment (ROI) for each of Spectral Energies’ customers across federal agencies, research universities, and commercial companies.
Growing a Small Business
For small businesses, the hunger to do more is often quelled by the reality of limited resources. As a result, necessity is often the biggest driver of decision-making: What do we need to do today to keep our doors open tomorrow? Funding from the NASA SBIR/STTR program allowed Spectral Energies to move into a different mindset and tap into their creative drive.
“Through the NASA program, we started diversifying in hypersonic test facilities from subsonic combustion facilities,” said Dr. Sukesh Roy, CEO of Spectral Energies, “and that opened many doors for the application of this laser, from detonation to directed energies. Without the funding from NASA, it would have been impossible for us to push for versatile technological enhancements that significantly broadened the application field.” Moving into the research and development of new applications allowed the company to widen its focus and ultimately find a larger customer base.
Spectral Energies’ continued work with the NASA SBIR/STTR program has helped the company further grow and succeed. By providing entry into new industries and new capabilities for existing customers, the add-on technologies developed with NASA SBIR-funding have generated significant commercial revenue for the small business. Additionally, these developments have opened the door for new funding opportunities with the Air Force, Navy, Army, and Missile Defense Agency.
Without the funding from NASA, it would have been impossible for us to push for versatile technological enhancements that significantly broadened the application field.
Dr. Sukesh Roy
CEO of Spectral Energies
Providing Benefit to NASA and Beyond
Dr. Paul Danehy, Senior Technologist for Advanced Measurement Systems at NASA’s Langley Research Center, has worked with Spectral Energies on a number of projects through the program. According to Dr. Danehy, not only did NASA SBIR funding aid the company’s technology growth, program funding also made it possible for NASA researchers to make use of this technology.
As Dr. Danehy explains, SBIR/STTR Post Phase II funding vehicles like Phase II-E and Phase III allow other programs within NASA to pool money together, then receive matching funds from the SBIR/STTR program. This matching funding increases the purchasing power of other NASA programs and has allowed the agency to acquire two of Spectral Energies’ pulse-burst laser systems, complete with add-ons.
Agency researchers are using these pulse-burst laser systems to obtain unique quantitative flow field measurements that will allow them to refine software codes to accurately design and evaluate new aerospace vehicles. In time, these software codes could cut hundreds of millions of dollars from the certification of commercial aircraft, allowing new planes to be developed and made available to passengers faster and cheaper.
View the full article
Christy Hansen’s journey with NASA spans more than two decades and is marked by roles that have shaped her into a leader in space exploration. Now serving on a six-month rotation as the deputy manager for NASA’s CLDP (Commercial Low Earth Orbit Development Program) at Johnson Space Center in Houston, she brings 25 years of human spaceflight experience and a global perspective on Earth sciences to her role.
Prior to her rotation, she served as the Artemis deputy mission manager in the Moon to Mars Program Office at NASA Headquarters in Washington, where she supported Artemis missions and facilitated the integration of science and utilization activities into the mission architecture and planning.
Hansen now leverages her vast expertise to advance NASA’s commercial space initiatives and support the agency’s long-term goals.
Christy Hansen serves a six-month rotation as deputy manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson Space Center in Houston. NASA/Bill Hrybyk
She is no stranger to Johnson. From 1999 to 2010, Hansen worked as an operations engineer in Johnson’s Flight Operations Directorate, focusing on astronaut training and flight control. She developed procedures, planned spacewalks, and trained astronauts to work in space suits with specialty tools on Space Shuttle, International Space Station, and Hubble Space Telescope missions. She was instrumental in supporting real-time operations as a flight controller for space station assembly missions and the final mission to service Hubble in 2009.
In 2010, Hansen became the operations manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland for the Robotic Refueling Mission, a technology demonstration payload that flew to the orbiting laboratory on STS-135. By 2012 she transitioned to airborne science project management at Goddard, leading multiple missions including Operation IceBridge’s first deployment to Antarctica. Her work focused on studying changes in Earth’s ice sheets and sea ice in Greenland and Antarctica, where she collaborated with scientists, engineers, and managers to design aircraft-based Earth science missions.
Christy Hansen at Antarctica’s geographic south pole in 2012.
Faced with her husband’s diagnosis of amyotrophic lateral sclerosis in 2014, Hansen drew on her vast experience and passion for engineering to solve a deeply personal issue on the ground. Combining her technical expertise and pioneering spirit, she led an effort to bring eye-gaze technology to Goddard, enabling individuals with neurodegenerative disabilities to continue working without the use of their hands or voice.
Her husband, Dave Parker, an engineer at Goddard who worked on all hubble servicing missions and tech demo payloads on the space station, was determined to keep working even when he could not use his arms, legs, hands, or voice. Together, they researched and pushed for this capability, ensuring that the technology could help many others in similar situations.
After collaborating with Goddard information technology and the commercial-off-the-shelf Tobi eye gaze company, they managed to implement the system within a year. Parker worked for a year and a half using this technology and supported the real-time installation of space station hardware he helped design from his hospital bed before passing away in March 2021.
Hansen continues to work with NASA’s Office of Diversity and Equal Opportunity to make this a standard accommodation option.
In her new role, she aims to support the development of an innovative acquisition strategy that fosters a robust commercial low Earth orbit environment. “I look forward to working with the CLDP team and our stakeholders to develop a creative and smart approach that enables a commercially led and operated low Earth orbit destination,” she said. “This includes fostering an open dialogue across disciplines, including critical tech authorities, programs, our industry and international partners, and Johnson and headquarters leadership. We can only go great places together.”
Her background in human spaceflight and science missions has given her a unique perspective. “I truly enjoy building partnerships and working across broad teams to achieve amazing goals,” she said. “This diversity of experience gave me an understanding of the critical goals, priorities, and culture of our key NASA stakeholders – and how we must integrate and work together to achieve the NASA mission.”
Through her career, she has learned to be open to new ideas and ways of doing things. “Be curious and proactively create space for all voices to be heard; there is more than one way to do things, and you must be open and receptive to different communication styles and experiences,” she said. “I lean on my broad experiences wherever I go.”
Christy Hansen at NASA’s Goddard Space Flight Center in Greenbelt, Maryland during her time as the project manager for NASA’s Operation IceBridge. NASA/Bill Hrybyk
For young ****** interested in a career in space, her advice is clear: “Go, go, go! You will face challenges and hurdles, but human spaceflight and NASA need your ideas, experiences, and energy. You uniquely bring momentum in a way others cannot – so don’t compare yourself to others. Study and do what you love – as that will get you through the hard times.”
Looking ahead, she is eager to help make space accessible and affordable to all, enabling a broader and diverse field of future flyers. “These destinations will enable critical science, human research, and tech development – important steppingstones to help us achieve our goals of landing on the Moon again and ultimately going to Mars,” she said. “No matter how dynamic and challenging our work is, my passion for human spaceflight and the NASA mission is inherently part of me.”
The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
[Hidden Content]
View the full article
NASA/Michael DeMocker
NASA is preparing the SLS (Space Launch System) rocket core stage that will help power the first crewed mission of NASA’s Artemis campaign for shipment. On July 6, NASA and Boeing, the core stage lead contractor, moved the Artemis II rocket stage to another part of the agency’s Michoud Assembly Facility in New Orleans. The move comes as teams prepare to roll the massive rocket stage to the agency’s Pegasus barge for delivery to NASA’s Kennedy Space Center in Florida in mid-July.
Prior to the move, technicians began removing external access stands, or scaffolding, surrounding the rocket stage in early June. NASA and Boeing teams used the scaffolding surrounding the core stage to assess the interior elements, including its complex avionics and propulsion systems. The 212-foot core stage has two huge propellant tanks, avionics and flight computer systems, and four RS-25 engines, which together enable the stage to operate during launch and flight.
The stage is fully manufactured and assembled at Michoud. Building, assembling, and transporting is a ****** process for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company.
NASA is working to land the first woman, first person of ******, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
News Media Contact
Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 *****@*****.tld
View the full article
Boeing’s Starliner spacecraft, with NASA astronauts Butch Wilmore and Suni Williams aboard, approaches the International Space Station for an autonomous docking as it orbited 257 miles above the South Pacific Ocean.
Leadership from NASA and Boeing will participate in a media briefing at 12:30 p.m. EDT Wednesday, July 10, to discuss the agency’s Crew Flight Test at the International Space Station.
Audio of the media teleconference will stream live on the agency’s website:
[Hidden Content]
Participants include:
Steve Stich, manager, NASA’s Commercial Crew Program
Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
Media interested in participating must contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour prior to the start of the call at ksc*****@*****.tld. A copy of NASA’s media accreditation policy is online.
NASA and Boeing continue to evaluate Starliner’s propulsion system performance and five small helium leaks in the spacecraft’s service module, gathering as much data as possible while docked to the International Space Station. Once all the necessary ground testing and associated data analysis is complete, leaders from NASA and Boeing will conduct an agency-level review before returning from the orbiting complex.
As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off on June 5, on a ******* Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module on June 6.
Since their arrival on June 6, Wilmore and Williams have completed half of all hands-on research time conducted aboard the space station, allowing their crewmates to prepare for the departure of Northrop Grumman’s Cygnus spacecraft. NASA also will hold an Earth to space news conference at 11 a.m., Wednesday, July 10, with the Crew Flight Test astronauts to discuss the mission.
NASA’s Commercial Crew Program is delivering on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the ******* States through a partnership with ********* private industry. This partnership is opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station ******** the springboard to NASA’s next great leap in space exploration, including future missions to the Moon under Artemis, and ultimately, to Mars.
For NASA’s blog and more information about the mission, visit:
[Hidden Content]
-end-
Josh Finch / Jimi Russell Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld
Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p*****@*****.tld / *****@*****.tld / *****@*****.tld
Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 *****@*****.tld / sandra.p*****@*****.tld
View the full article
Northrop Grumman’s Cygnus spacecraft and the International Space Station above western Mongolia (Credits: NASA).
Northrop Grumman’s uncrewed Cygnus spacecraft is scheduled to depart the International Space Station on Friday, July 12, five and a half months after delivering more than 8,200 pounds of supplies, scientific investigations, commercial products, hardware, and other cargo to the orbiting laboratory for NASA and its international partners.
This mission was the company’s 20th commercial resupply mission to the space station for NASA.
Live coverage of the spacecraft’s departure will begin at 6:30 a.m. EDT on the NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media.
Flight controllers on the ground will send commands for the space station’s Canadarm2 robotic arm to detach Cygnus from the Unity module’s Earth-facing port, then maneuver the spacecraft into position for its release at 7 a.m. NASA astronaut Mike Barratt will monitor Cygnus’ systems upon its departure from the space station.
Following unberthing, theKentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for the spacecraft and its contents during re-entry in Earth’s atmosphere.
Cygnus – filled with trash packed by the station crew – will be commanded to deorbit on Saturday, July 13, setting up a destructive re-entry in which the spacecraft will safely ***** up in Earth’s atmosphere.
The Northrop Grumman spacecraft arrived at the space station Feb. 1, following a launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
Get breaking news, images, and features from the space station on the station blog, Instagram, Facebook, and X.
Learn more about Cygnus’ mission and the International Space Station at:
[Hidden Content]
-end-
Joshua Finch / Julian Coltre Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld
Sandra Jones / Dominique Crespo Johnson Space Center, Houston 281-483-5111 sandra.p*****@*****.tld / dominique.v*****@*****.tld
View the full article
NASA
The space shuttle Columbia launches from Pad 39A at NASA’s Kennedy Space Center in Florida on July 8, 1994. This was the second flight of International Microgravity Laboratory (IML-2), carrying more than twice the number of experiments and facilities as IML-1. The crew split into two teams to perform around-the-clock research. More than 80 experiments, representing more than 200 scientists from six space agencies, were in the Spacelab module. Fifty of these experiments delved into life sciences, including bioprocessing, space biology, human physiology, and radiation biology.
STS-65’s crew included NASA astronauts Robert D. Cabana, James D. Halsell Jr., Richard J. Hieb, Carl E. Walz, Leroy Chiao, and Donald A. Thomas, as well as National Space Development Agency (NASDA) of Japan astronaut Chiaki Naito-Mukai. On this flight, Naito-Mukai became the first ********* woman in space.
Image Credit: NASA
View the full article
2 min read
NASA’s Neurodiversity Network Interns Speak at National Space Development Conference
Two high school interns funded by NASA’s Neurodiversity Network (N3) presented their work from Summer 2023 at the recent National Space Society (NSS) International Space Development Conference (ISDC-2024), held in Los Angeles, CA (May 23-26, 2024). Both interns were mentored by Dr. Pascal Lee, Planetary Scientist at the SETI Institute and Chair of the Mars Institute, who accompanied them to the conference. Intern Finn Braun, who is now a high school junior, co-authored the paper “An ATV for the Moon” with Dr. Lee. He worked with a CAD program to develop the concept, which might be of interest to NASA’s Artemis Program in the future. Intern Krista Heinemann, who has now graduated high school, co-authored the paper “New location for the ‘Noctis Landing’ candidate human landing site on Mars” in which she used NASA data about the Noctis Landing site provided by Dr. Lee to refine a possible landing location for future human missions to the surface of Mars. In addition to the ***** presentations they gave, Braun and Heinemann lead-authored technical publications reporting their research. Braun and Heinemann were part of the 2023 N3 intern cohort, which included 19 other high school students, each paired with a NASA Subject Matter Expert as a mentor. The N3 internship program is now beginning its fourth summer with a new cohort of 21 additional interns.
Dr. Lee noted, “Finn and Krista were outstanding interns, who now each have lead-authored scientific/technical publications while in high school. I am sure they will each do great things in the future.”
The references for the two papers are:
Braun, F. and P. Lee 2024. An ATV for the Moon. National Space Society International Space Development Conference, ISDC-2024, 23-26 May 2024, Los Angeles, CA, Moon Track, #2003.
Heinemann, K. and P. Lee 2024. New location for the ‘Noctis Landing’ candidate human landing site on Mars. National Space Society International Space Development Conference, ISDC-2024, 23-26 May 2024, Los Angeles, CA, Mars Track, #3002.
NASA’s Neurodiversity Network is supported by NASA under cooperative agreement award number 80NSSC21M0004 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content]
Finn Braun speaks about his design for a lunar ATV at the 2024 International Space Development Conference while his mentor Dr. Pascal Lee looks on.
NSS/Madhu Thangavelu
Share
Details
Last Updated
Jul 08, 2024
Editor
NASA Science Editorial Team
Related Terms
Internships
Planetary Science
Science Activation
Explore More
1 min read
NASA Science Activation Teams Present at National Rural STEM Summit
Article
3 days ago
9 min read
Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert
Article
1 week ago
2 min read
NASA@ My Library and Partners Engage Millions in Eclipse Training and Preparation
Article
1 week ago
Keep Exploring
Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater)
A painter applies a fresh coat of paint to the NASA “meatball” logo on the north façade of Glenn Research Center’s Flight Research Building, or hangar, in 2006.Credit: NASA/Marvin Smith
On July 15, 2024, NASA’s logo is turning 65. The iconic symbol, known affectionately as “the meatball,” was developed at NASA’s Lewis Research Center in Cleveland (now called NASA Glenn). Employee James Modarelli, who started his career at the center as an artist and technical illustrator, was its chief designer.
The red, white, and blue design, which includes elements representing NASA’s space and aeronautics missions, became the official logo of the ******* States’ new space agency in 1959. A simplified version of NASA’s former seal, the symbol has launched on rockets, flown to the Moon and beyond, and even adorns the International Space Station.
Along with its importance as a timeless symbol of exploration and discovery, the logo is also one of the world’s most recognized brand symbols. It gained its nickname in 1975 to differentiate it from NASA’s “worm” logotype. The “meatball” and these other NASA designs have made waves in pop culture.
"NASA's brand elements are wildly popular.”
Aimee crane
Merchandising and Branding Clearance Manager
“NASA’s brand elements are wildly popular,” said Aimee Crane, merchandising and branding clearance manager for the agency. “Every year, the agency receives requests to merchandise more than 10,000 NASA-inspired items.”
To mark the “meatball” logo’s birthday and highlight the center’s contributions to its design, NASA Glenn will host a free admission day at Great Lakes Science Center in Cleveland from 10 a.m. to 5 p.m. ET on July 15. A birthday celebration and cake-cutting ceremony will begin at 10:30 a.m. and feature remarks from center leadership, a visit from the Modarelli family, and special presentations from the city and state.
Workers install the NASA “meatball” logo on the front of the Flight Research Building, or hangar, at Lewis Research Center (now NASA Glenn) in 1962. Credit: NASA
A host of additional activities will celebrate the intersection of science and art. Visitors can meet NASA Glenn’s award-winning photographers and videographers, show off their artistic skills by participating in a coloring contest, hear more about the history and symbolism behind the logo, and learn about creative careers within the agency.
“It’s not just rocket scientists here at NASA."
KRISTEN PARKER
NASA Glenn Communications Director
“It’s not just rocket scientists here at NASA,” said Kristen Parker, NASA Glenn’s communications director. “As we celebrate the legacy of this iconic logo, we acknowledge the essential contributions of all the career fields involved in making the agency’s missions possible. We hope this inspires the next generation of students in every discipline to explore opportunities with NASA.”
NASA’s logo is everywhere. If you’re not in the Northeast Ohio area, join the logo’s birthday celebration online by engaging with NASA Glenn on social media and sharing photos of where you’ve seen the logo in your own life.
NASA Glenn designs and develops innovative technology that’s revolutionizing air travel, advancing space exploration, and improving life on Earth. Beyond designing the logo, the center has played a part in nearly every NASA mission since the agency’s inception and continues to have a crucial role in advancing the Artemis missions to the Moon and beyond.
Explore More
2 min read
NextSTEP Q: CIS Capability Studies III – Lunar User Terminals & Network Orchestration and Management System
Article
2 hours ago
21 min read
Interview with Xinchuan Huang
Article
6 days ago
5 min read
Mission Success: HERA Crew Successfully Completes 45-Day Simulated Journey to Mars
Article
6 days ago
View the full article
3 min read
NASA Mission to Study Mysteries in the Origin of Solar Radio Waves
NASA’s CubeSat Radio Interferometry Experiment, or CURIE, is scheduled to launch July 9, 2024, to investigate the unresolved origins of radio waves coming from the Sun.
CURIE will investigate where solar radio waves originate in coronal mass ejections, like this one seen in 304- and 171-angstrom wavelengths by NASA’s Solar Dynamics Observatory.
NASA/Goddard Space Flight Center
Scientists first noticed these radio waves decades ago, and over the years they’ve determined the radio waves come from solar flares and giant eruptions on the Sun called coronal mass ejections, or CMEs, which are a key driver of space weather that can impact satellite communications and technology at Earth. But no one knows where the radio waves originate within a CME.
The CURIE mission aims to advance our understanding using a technique called low frequency radio interferometry, which has never been used in space before. This technique relies on CURIE’s two independent spacecraft — together no ******* than a shoebox — that will orbit Earth about two miles apart. This separation allows CURIE’s instruments to measure tiny differences in the arrival time of radio waves, which enables them to determine exactly where the radio waves came from.
“This is a very ambitious and very exciting mission,” said Principal Investigator David Sundkvist, a researcher at the University of California, Berkeley. “This is the first time that someone is ever flying a radio interferometer in space in a controlled way, and so it’s a pathfinder for radio astronomy in general.”
CURIE team members work on integrating the satellites into the CubeSat deployer.
ExoLaunch
The spacecraft, designed by a team from UC Berkeley, will measure radio waves ranging 0.1 to 19 megahertz to pinpoint the radio waves’ solar origin. These wavelengths are blocked by Earth’s upper atmosphere, so this research can only be done from space.
CURIE will launch aboard an ESA (********* Space Agency) Ariane 6 rocket in early July from the Guiana Space Center in Kourou, French Guiana. The rocket will take CURIE to 360 miles above Earth’s surface, where it can get a clear view of the Sun’s radio waves.
Once in its circular orbit, the two adjoined CURIE spacecraft will establish communication with ground stations before orienting and separating. When the separated satellites are in formation, their dual eight-foot antennas will deploy and start collecting data.
CURIE is sponsored by NASA’s Heliophysics Flight Opportunities for Research and Technology (H-FORT) Program and is the sole mission manifested on the NASA CubeSat Launch Initiative’s ELaNa (Educational Launch of Nanosatellites) 43 mission. As a pathfinder, CURIE will demonstrate a proof-of-concept for space-based radio interferometry in the CubeSat form factor. CURIE will also pave the way for the upcoming Sun Radio Interferometer Space Experiment, or SunRISE, mission. SunRISE will employ six CubeSats to map the region where the solar radio waves originate in 2-D.
By Mara Johnson-Groh NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated
Jul 08, 2024
Editor
Abbey Interrante
Related Terms
CubeSat Launch Initiative
CubeSats
ELaNa (Educational Launch of Nanosatellites)
Goddard Space Flight Center
Heliophysics
Heliophysics Division
Heliophysics Research Program
Science Mission Directorate
Small Satellite Missions
SunRISE (Sun Radio Interferometer Space Experiment)
The Sun
The Sun & Solar Physics
Explore More
5 min read
First of NASA’s SunRISE SmallSats Rolls Off Production Line
Six of these small satellites will work together, creating the largest radio telescope ever launched…
Article
2 years ago
Keep Exploring
Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
NASA’s Artemis missions aim to establish a sustained lunar presence on and around the Moon. Communications and navigation technologies will be critical to enabling the safety, science, and operations of our astronauts and missions.NASA
Solicitation Number: NNH16ZCQ001K-1_Appendix-Q-LUTNOMS
July 8, 2024 – Solicitation Released
Solicitation Overview
NASA’s long-term vision to provide for a resilient space and ground communications and navigation infrastructure in which space mission users can seamlessly “roam” between an array of space-based and ground-based networks has been bolstered by innovative studies delivered by industry through the Next Space Technologies for Exploration (NextSTEP) – 2 Omnibus Broad Agency Announcement vehicle. Initially, NASA seeks to create an interoperable architecture composed of a mixture of existing NASA assets and commercial networks and services. In the long-term, this will allow for a smooth transition to fully commercialized communications services for near-Earth users. The overarching goal is to create a reliable, robust, and cost-effective set of commercial services in which NASA is one of many customers.
NASA’s Commercialization, Innovation, and Synergies (CIS) Office has released a solicitation notice under the Next Space Technologies for Exploration Partnerships-2 (Next STEP-2) Broad Agency Announcement (BAA) to seek industry insights, innovative guidance, and demonstrations in the following two (2) Study Areas:
Lunar User Terminals
Network Orchestration and Management System (NOMS)
To support lunar surface operations, NASA is seeking state-of-the-art industry studies, system development, and demonstrations for a dual-purpose navigation and communication lunar surface user terminal. The terminal must meet technical requirements provided by the government to support lunar surface exploration plans and ensure interoperability with developed LunaNet and Lunar Communications Relay and Navigation System (LCRNS) standards. The requirements will be split into separate LunaNet Augmented Forward Signal (AFS) navigation receiver and communications transceiver capabilities. However, the development of a combined communications and position, navigation, and timing (CPNT) system capable of meeting the full suite of requirements is desired.
Additionally, NASA is seeking innovative industry studies and demonstrations on advanced Network Orchestration and Management Systems (NOMS) that effectively address NASA technical requirements aimed at controlling and interfacing with a globally distributed network of Satellite Ground Systems currently supporting the Near Space Network (NSN).
The resulting studies will ensure advancement of NASA’s development of space communication and exploration technologies, capabilities, and concepts.
View the full article
Begoña Vila, an instrument systems engineer for NASA’s James Webb Space Telescope, has been selected to receive the 2024 Galician Excellence Title in the Sciences and Medicine Category for her career and work on Webb.
Dr. Begoña Vila, Instrument Systems Engineer, James Webb Space Telescope
This award comes from the Spanish Association of Galician Entrepreneurs of Catalonia (AEGA-CAT), a civic and social organization of entrepreneurs who seek to extend their vocation outside the country of Spain. The award honors individuals for their “profound human quality, their professional achievements, and their contribution to the development of Galicia and its respect for the culture and traditions of their land.” The award was presented to Vila July 5 at the 19th Gala Dinner of AEGA-CAT in Barcelona, Spain.
“I feel very honored to receive this title,” Vila said. “It is a wonderful surprise and special to me, working abroad, to be remembered and recognized in my home country. I grew up in Galicia, where a lot of my family lives, and it is always a pleasure to go back there.”
Vila is also an instrument systems engineer for NASA’s upcoming Nancy Grace Roman Space Telescope at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, in addition to her role with the Webb mission. In particular, she is the systems lead for two of the instruments on Webb, one of which is the Fine Guidance Sensor (FGS) responsible for the pointing and stability of the observatory.
She led the final cryogenic test at Goddard for all the science instruments and supported the testing at NASA’s Johnson Space Flight Center in Houston; Northrop Grumman Space Systems in southern California; at the launch site, Europe’s Spaceport in French Guiana; and during the commissioning ******* at the Mission Control Center at the Space Telescope Science Institute in Baltimore. Vila continues her support for Webb operations and actively engages in Spanish and English media interviews and outreach activities for the Webb program, including Science, Technology, Engineering, and Mathematics (STEM) events.
Vila’s involvement with Webb began in 2006 when she was working with COM DEV International, the ********* company that developed and tested the FGS and Near Infrared Imager and Slitless Spectrograph (NIRISS) under CSA (********* Space Agency), one of NASA’s international partners. Vila worked with the CSA team to ensure all the tests, analysis, and requirements verifications were complete and the instruments were ready for delivery to NASA in 2012.
She then moved to work at Goddard, as systems lead for FGS and NIRISS but also expanding her role to test director for the final cryogenic test of all the Webb’s instruments, and to deputy operations lead for the science instruments.
The Galician Excellence Titles, established by the association in 2005, recognize the personal and professional career of those people who contribute to the economic development and knowledge of Galicia outside its borders. Other categories of this award include Arts, Business, Solidarity Action, Sports, Communication & New Entrepreneurs.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (********* Space Agency) and CSA (********* Space Agency).
For more information about NASA’s Webb telescope visit: www.nasa.gov/webb
Rob Gutro
NASA’s Goddard Space Flight Center
Keep Exploring
Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Roman
Universe
Exoplanets
View the full article
Curiosity Navigation
Curiosity
Mission Overview
Where is Curiosity?
Mission Updates
Science
Overview
Instruments
Highlights
Exploration Goals
News and Features
Multimedia
Curiosity Raw Images
Mars Resources
Mars Missions
Mars Sample Return
Mars Perseverance Rover
Mars Curiosity Rover
MAVEN
Mars Reconnaissance Orbiter
Mars Odyssey
More Mars Missions
All Planets
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto & Dwarf Planets
2 min read
Sols 4236-4238: One More Time… for Contact Science at Mammoth Lakes
NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on July 4, 2024, Sol 4234 of the Mars Science Laboratory Mission, at 16:38:50 UTC. This image of the Mammoth Lakes 2 drill fines and drill ***** was taken from about 25 centimeters (about 10 inches) above the surface.
Earth planning date: Friday, July 5, 2024
Curiosity will drive away from the Mammoth Lakes drill location on the second sol of this three-sol weekend plan, but before she does, the team will take the opportunity for one last chance at contact science in this interesting region of the Gediz Vallis ********. The team have noticed distinct troughs surrounding many of the bright-toned, pitted blocks in this area and have been wanting to get closer imaging with MAHLI before driving away. We were unable to do this with powdered Mammoth Lakes still in the drill stem but, having dumped any remaining material in the previous plan, Curiosity is free to use her arm again for contact science, and hence the MAHLI camera. We will take images from about 30 centimeters (about 12 inches) away from the block (“Glacier Notch”) with MAHLI. Unfortunately, “Glacier Notch” was too close to the rover to be able to fit the turret in for APXS to examine the chemistry, so we had to choose a different target: “Lake Ediza” is an example of gray material that rims the Mammoth Lakes drill block.
We also have one last chance for ChemCam and Mastcam in this immediate area. We will acquire ChemCam passive spectra of the Mammoth Lakes powdered material surrounding the drill ***** (we collected APXS data and MAHLI images of the drill fines in the previous plan) and LIBS on a darker-toned target, “Zumwalt Meadow.” These targets will be documented by Mastcam. The long-distance imaging capabilities of ChemCam will also be utilized to examine nearby ridge and trough-like forms.
There are also a slew of atmospheric/environmental observations planned. Before we drive away, we will take advantage of being parked in the same spot while drilling to monitor any changes in the immediate environment by re-imaging a couple of areas previously captured on multiple occasions by Mastcam. Other atmospheric observations include a Navcam line-of-sight mosaic, Navcam dust ******, zenith, and suprahorizon movies, a ChemCam passive sky, and Mastcam taus.
After the drive, MARDI will image the terrain beneath the wheels and ChemCam will autonomously select a target to analyze with LIBS. Standard REMS, DAN and RAD activities round out the plan.
The team are looking forward to a new workspace when we return for planning on Monday, and continued investigation of the Gediz Vallis ********.
Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
Share
Details
Last Updated
Jul 06, 2024
Related Terms
Blogs
Explore More
2 min read
Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!
Article
3 days ago
5 min read
Sols 4232-4233: Going For a Ride, Anyone?
Article
4 days ago
2 min read
Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
Article
5 days ago
Keep Exploring
Discover More Topics From NASA
Mars
Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Mars Exploration Science Goals
View the full article
The NASA Breath Diagnostics challenge tasks solvers to leverage their expertise to develop a classification model that can accurately discriminate between the breath of COVID-positive and COVID-negative individuals, using existing data. The ultimate goal is to improve the accuracy of the NASA E-Nose device as a potential clinical tool that would provide diagnostic results based on the molecular composition of human breath.
Award: $55,000 in total prizes
Open Date: July 5, 2024
Close Date: September 6, 2024
For more information, visit: [Hidden Content]
View the full article
1 min read
NASA Science Activation Teams Present at National Rural STEM Summit
NASA Science Activation (SciAct) teams participated in the National Rural STEM (Science, Technology, Engineering, & Mathematics) Summit held June 4-7, 2024 in Tucson, Arizona. Hosted by Kalman Mannis of the Rural Activation and Innovation Network (Arizona Science Center) and the SciTech Institute, the summit fostered learning and sharing among organizations dedicated to creating partnerships and pathways for authentic STEM learning in rural communities.
Participants included:
Matt Cass and Randi Neff from SciAct’s Smoky Mountains STEM Collaborative, who presented “A sense of place: Crafting authentic experiences for rural STEM learners”;
Tina Harte from NASA (Science Systems and Applications, Inc), who presented “Nature explorations with NASA”;
Kalman Mannis from the SciAct STEM Ecosystems project and the Rural Activation and Innovation Network, who presented “Building leaders in STEM through coaching, connections, and camaraderie”; and
members of the SciAct Rural Committee.
SciAct STEM Ecosystems is supported by NASA under cooperative agreement award number 80NSSC210007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content]
Randi Neff of the NASA SciAct-funded Smoky Mountains STEM Collaborative presents at the National Rural STEM Learning Summit.
Arizona Science Center
Share
Details
Last Updated
Jul 05, 2024
Editor
NASA Science Editorial Team
Related Terms
Astrophysics
Biological & Physical Sciences
Earth Science
Heliophysics
Planetary Science
Science Activation
Science-enabling Technology
Explore More
4 min read
NASA’s Webb Captures Celestial Fireworks Around Forming Star
Article
3 days ago
9 min read
Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert
Article
4 days ago
3 min read
NASA Selects 5 Proposals to Conduct Research Using Openly Available Data in the Physical Sciences Informatics System
Article
7 days ago
Keep Exploring
Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
Firefly Aerospace’s Alpha rocket leaves a glowing trail above the skies of Vandenberg Space Force Base in California on July 3, 2024. Firefly Aerospace/Trevor Mahlmann
As part of NASA’s CubeSat Launch Initiative, Firefly Aerospace launched eight small satellites on July 3 aboard the company’s Alpha rocket. Named “Noise of Summer,” the rocket successfully lifted off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:04 p.m. PDT.
The CubeSat missions were designed by universities and NASA centers and cover science that includes climate studies, satellite technology development, and educational outreach to students.
Firefly Aerospace completed its Venture-Class Launch Services Demonstration 2 contract with this launch. The agency’s venture-class contracts offer launch opportunities for new providers, helping grow the commercial launch industry and leading to cost-effective competition for future NASA missions.
NASA’s CubeSat Launch Initiative provides a low-cost way for universities, non-profits, science centers, and other researchers to conduct science and technology demonstrations in space.
Image Credit: Firefly Aerospace/Trevor Mahlmann
View the full article
Curiosity Navigation
Curiosity
Mission Overview
Where is Curiosity?
Mission Updates
Science
Overview
Instruments
Highlights
Exploration Goals
News and Features
Multimedia
Curiosity Raw Images
Mars Resources
Mars Missions
Mars Sample Return
Mars Perseverance Rover
Mars Curiosity Rover
MAVEN
Mars Reconnaissance Orbiter
Mars Odyssey
More Mars Missions
All Planets
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto & Dwarf Planets
2 min read
Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!
This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:21:12 UTC).
Earth Planning Date: Wednesday, July 3, 2024
We received the data from our SAM analysis of the Mammoth Lakes sample late Monday afternoon. After chewing over the results, the team declared we are very happy with all of the analyses we’ve done with this sample, and we are ready to move on to greener pastures… er, redder rocks! This decision means that we will go ahead and clear out the drill assembly in today’s plan, and subsequently use the arm to collect MAHLI and APXS observations of the pile of drill tailings around the drill *****.
We’ll also have some time for remote sensing activities that use our mast-mounted instruments. Even though we’ve been parked at this location for several weeks, we’re still finding lots of things to look at! ChemCam will collect LIBS observations on a light-toned rock target named “Finger Peaks,” as well as a bumpy rock named “Glen Aulin.” We’ll also collect some additional Mastcam images of interesting features in the area, and a long-distance RMI mosaic of a target named “Rock Island Pass.” Several kinds of environmental monitoring activities will round out the plan.
It’s been a very productive drill sampling campaign here at Mammoth Lakes, our first after crossing into Gediz Vallis channel, and I’m excited to start getting ready to move on. What’s around the corner in this fascinating area of Mt. Sharp?
Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Share
Details
Last Updated
Jul 03, 2024
Related Terms
Blogs
Explore More
5 min read
Sols 4232-4233: Going For a Ride, Anyone?
Article
2 days ago
2 min read
Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
Article
2 days ago
2 min read
Sols 4226-4228: A Powerful Balancing Act
Article
6 days ago
Keep Exploring
Discover More Topics From NASA
Mars
Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…
All Mars Resources
Rover Basics
Mars Exploration Science Goals
View the full article
30 Min Read
The Marshall Star for July 3, 2024
11 Marshall Team Members, 5 Teams Awarded in Space Flight Awareness Ceremony
By Jessica Barnett
Sixteen individuals and groups from across NASA’s Marshall Space Flight Center were recognized June 27 for going above and beyond in their support of the human space program.
Marshall Deputy Director Rae Ann Meyer presented the awards during a special Space Flight Awareness ceremony in Activities Building 4316.
NASA’s Marshall Space Flight Center Deputy Director Rae Ann Meyer speaks to audience members and award winners at the Space Flight Awareness awards ceremony held June 27 in Activities Building 4316. In all, 11 Marshall team members were presented with SFA Trailblazer or Management awards, while five teams were presented with SFA Team Awards. NASA/Charles Beason
“I am honored to be part of Marshall’s talented and dedicated workforce, with all we accomplish,” Meyer said. “Celebrating your commitment to keeping our astronauts and our missions safe through your daily work is a true joy. Your ability to innovate, lead, and manage successful teams is inspiring.”
Of the 16 awards presented, nine were awarded to SFA Trailblazers. These individuals, each in the early stages of their career, demonstrate a strong work ethic and creative, innovative thinking in support of human spaceflight.
Two Marshall team members received the SFA Management Award, which aims to recognize mid-level managers who consistently demonstrate loyalty, empowerment, accountability, diversity, excellence, respect, sharing, honesty, integrity, and proactivity.
In addition, five teams received the SFA Teams Award in recognition of their exemplary teamwork while accomplishing a particular task or goal in support of the human space program.
The full list of winners is below:
Trailblazers
Josie Blocker
Savannah Bullard
Austin Lee
Kaitlin Oliver-Butler
Nicholas Olson
Elvis Popov
Gwyer Sinclair
Timothy Wray
William Till
Management
Jennifer Franzo
John Sharp
Teams
Safety Mission Assurance Software Assurance Launch Support Team, Artemis I Team
SLS (Space Launch System) Engineering Imagery Team
Mars Ascent Vehicle Verification and Validation Team
SLS Coupled Loads Analysis Team
ECLSS (Environmental Control and Life Support Systems) Flight Systems Design and Analysis Team
The SFA Trailblazer, Management, and Team awards are three of eight awards presented annually by Space Flight Awareness. Additional information, including eligibility criteria, can be found here.
Barnett, a Media Fusion employee, supports the Marshall Office of Communications.
› Back to Top
Marshall’s Hot Gas Facility, Team Provide Critical Testing Capability
By Wayne Smith
The Hot Gas Facility at NASA’s Marshall Space Flight Center can really take the heat – up to 3,000 degrees Fahrenheit – creating a test environment geared for making human space exploration safer.
Mitigating human risk and returning Artemis II astronauts safely to Earth is paramount as NASA prepares for its first crewed mission aboard the Space Launch System to the Moon in more than 50 years. Engineers use the Marshall facility to simulate launch conditions for testing SLS hardware, the TPS (thermal protection system), and other materials in a Mach 4 environment – four times the speed of sound.
The Hot Gas Facility at NASA’s Marshall Space Flight Center is a unique, world-class gaseous hydrogen/air combustion-driven wind tunnel used primarily for Thermal Protection System testing and aerothermal definition. NASA
“At NASA, we live on the idea of ‘test like you fly,’” said Malik Thompson, Commercial Crew TPS subsystem manager. “It’s very difficult to replicate the entirety of space and the environment that gets you there. It’s a unique capability – and the only one in the entire world.”
The current Hot Gas Facility has been in service for 37-plus years and has completed more than 27,000 hot firings. It was built to develop, characterize, and qualify TPS materials for flight vehicles, but has proven to be invaluable for addressing in-flight anomalies and performing material and instrumentation studies. It has qualified materials for NASA crewed and uncrewed flight vehicles, as well as for Department of Defense and commercial vehicles.
During tests, combustion products are expanded from the combustion chamber through a two-dimensional nozzle into a 16×16 inch test section. A Mach 4 flow environment is induced, along with heating rates up to 3,000 degrees Fahrenheit. It can induce convective and radiant heating simultaneously to accurately simulate flight conditions during ascent. The facility has 512 channels of instrumentation to support a variety of engineering measurements and test scenarios.
The facility’s flexibility, and its innovative and experienced crew members, means NASA can accomplish testing more quickly and at considerably less cost when compared to large national test facilities.
“Conditions and configurations can be adjusted during a test program to address issues as they arise,” said Greg Vinyard, a Marshall engineer who has worked 38 years at the facility. “This flexibility is valuable for small and large-scale research and development programs. The experienced crew adds to the unique capability, working with customers to provide innovative methods to address the requirements of a test program and maximize the results of the testing.”
The facility served as the benchmark for the recession characteristics of space shuttle TPS materials and historically has been “the acid test” – if a material survives the Hot Gas Facility environments, the material will survive flight environments.
“Freeing a launch vehicle from the surface of Earth is a huge part of space travel, and you need a lot of acceleration speed to escape gravity,” Thompson said. “It’s something you can’t replicate very easily, but the Hot Gas Facility is so much more than a wind tunnel. The high temperature aspect of testing is very important, and the ability to adjust to fit various launch environments.”
The facility’s legacy stretches from the Space Shuttle Program to the International Space Station and now Artemis. Artemis II will carry a crew of four around the Moon to confirm systems operate as designed in the deep space environment. The mission will pave the way to way for lunar surface missions, establish long-term lunar science and exploration capabilities, and inspire the next generation of explorers.
The Hot Gas Facility validates critical safety measures for the mission, with testing primarily focused on TPS, spray-on foam insulation, and other materials protecting the SLS (Space Launch System) rocket and the Orion spacecraft.
“These are crewed missions,” Thompson said. “Mitigating and understanding risks as much as possible is part of the job. Getting these materials in these environments to make sure they are capable of withstanding and still performing is important.”
A prime example of the facility’s capability was 2022 testing for the Human Exploration Development and Operations Office for the Commercial Crew Program. A ****** test series with SpaceX, proposed by Thompson, was a seven-month campaign with launch vehicles that would carry astronauts to and from the space station, with 185 test runs.
“We set up a test campaign that would allow us to find a way to test components and materials for multiple flights and have a safe vehicle for a crewed flight,” Thompson said.
Hot Gas Facility, where their motto is “how hot and how long,” has operated at Marshall since 1971, evolving over the years to incorporate lessons learned from previous designs. “Testing here focuses on improving TPS design to make it safer for astronauts,” Thompson said. “Astronauts do the hard work in space. The testing we do on the ground informs the decisions we make to get them there safely. Capabilities like those we have at the Hot Gas Facility are our primary tool for preparing for the unknown.”
Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
› Back to Top
NASA Announces Winners of Inaugural Human Lander Challenge
NASA’s 2024 Human Lander Challenge (HuLC) Forum brought 12 university teams from across the ******* States to Huntsville, near the agency’s Marshall Space Flight Center, to showcase their innovative concepts for addressing the complex issue of managing lunar dust. The 12 finalists, selected in March 2024, presented their final presentations to a panel of NASA and industry experts from NASA’s Human Landing Systems Program at the HuLC Forum in Huntsville June 25-27.
Twelve university teams gathered in Huntsville, near NASA’s Marshall Space Flight Center, June 25-27, to participate in the final round of NASA’s 2024 Human Lander Challenge (HuLC) Forum.NASA/Ken Hall
NASA’s lunar exploration campaign Artemis is working to send the first woman, first person of ******, and first international partner astronaut to the Moon and establish long-term lunar science and exploration capabilities. Dust mitigation during landing is one of the key challenges NASA and its Artemis partners will have to address in exploring the lunar South Pole region and establishing a long-term human presence on the Moon. Participants in the 2024 Human Lander Challenge developed proposed systems-level solutions that could be potentially implemented within the next 3-5 years to manage or prevent clouds of dust – called lunar plume surface interaction – that form as a spacecraft touches down on the Moon.
NASA announced the University of Michigan team, with their project titled, “ARC-LIGHT: Algorithm for Robust Characterization of Lunar Surface Imaging for Ground Hazards and Trajectory” as the selected overall winner and recipient of a $10,000 award June 27.
The University of Illinois, Urbana-Champaign took second place and a $5,000 award with their project, “HINDER: Holistic Integration of Navigational Dynamics for Erosion Reduction,” followed by University of Colorado Boulder for their project, “Lunar Surface Assessment Tool (LSAT): A Simulation of Lunar Dust Dynamics for Risk Analysis,” and a $3,000 award.
“Managing and reducing the threat of lunar dust is a formidable challenge to NASA and we are committed to real solutions for our long long-term presence on the Moon’s surface,” said Don Krupp, associate program manager for the HLS Program at Marshall. “A key part of NASA’s mission is to build the next generation of explorers and expand our partnerships across commercial industry and the academic community to advance HLS technologies, concepts, and approaches. The Human Lander Challenge is a great example of our unique partnership with the academic community as they help provide innovative and real solutions to the unique risks and challenges of returning to the Moon.”
NASA selected the University of Michigan as the overall winner of NASA’s 2024 Human Lander Challenge (HuLC) Forum.NASA/Ken Hall
Two teams received the excellence in systems engineering award:
Texas A&M University, “Synthetic Orbital Landing Area for Crater Elimination (SOLACE)
Embry-Riddle Aeronautical University, Prescott, “Plume Additive for Reducing Surface Ejecta and Cratering (PARSEC)
“The caliber of solutions presented by the finalist teams to address the challenges of lunar-plume surface interaction is truly commendable,” said Esther Lee, HuLC judging panel chair and aerospace engineer at NASA’s Langley Research Center. “Witnessing the development of these concepts is an exciting glimpse into the promising future of aerospace leadership. It’s inspiring to see so many brilliant minds coming together to solve the challenges of lunar landings and exploration. We may all come from different educational backgrounds, but our shared passion for space unites us.”
Student and faculty advisor participants had the opportunity to network and interact with NASA and industry subject matter experts who are actively working on NASA’s Human Landing System capabilities giving participants a unique insight to careers and operations that further the Agency’s mission of human space exploration.
NASA’s Human Lander Challenge is sponsored by Human Landing System Program and managed by the National Institute of Aerospace.
Learn more about NASA Exploration Systems Development Mission Directorate.
› Back to Top
Six Adapters for Crewed Artemis Flights Tested, Built at Marshall
As a child learning about basic engineering, you probably tried and ******* to join a square-shaped toy with a circular-shaped toy: you needed a third shape to act as an adapter and connect them both together. On a much larger scale, integration of NASA’s powerful SLS (Space Launch System) rocket and the Orion spacecraft for the agency’s Artemis campaign would not be possible without the adapters being built, tested, and refined at NASA’s Marshall Space Flight Center.
Six adapters for the next of NASA’s SLS (Space Launch System) rockets for Artemis II through Artemis IV are currently at NASA’s Marshall Space Flight Center. Engineers are analyzing data and applying lessons learned from extensive in-house testing and the successful uncrewed Artemis I test flight to improve future iterations of the rocket.NASA/Sam Lott
Marshall is currently home to six adapters designed to connect SLS’s upper stages with the core stages and propulsion systems for future Artemis flights to the Moon.
The first three Artemis flights use the SLS Block 1 rocket variant, which can send more than 27 metric tons (59,500 pounds) to the Moon in a single launch with the assistance of the interim cryogenic propulsion stage. The propulsion stage is sandwiched between two adapters: the launch vehicle stage adapter and the Orion stage adapter.
The cone-shaped launch vehicle stage adapter provides structural strength and protects the rocket’s flight computers and other delicate systems from acoustic, thermal, and vibration effects.
“The inside of the launch vehicle stage adapter for the SLS rocket uses orthogrid machining – also known as waffle pattern machining,” said Keith Higginbotham, launch vehicle stage adapter hardware manager supporting the SLS Spacecraft/Payload Integration & Evolution Office at Marshall. “The aluminum alloy plus the grid pattern is lightweight but also very strong.”
Following the first flight of SLS with Artemis I, technicians adjusted their approach to assembling the launch vehicle stage adapter by introducing the use of a rounding tool to ensure that no unintended forces are placed on the hardware.NASA/Sam Lott
The launch vehicle stage adapter for Artemis II is at Marshall and ready for shipment to NASA’s Kennedy Space Center, while engineering teams are completing outfitting and integration work on the launch vehicle stage adapter for Artemis III. These cone-shaped adapters differ from their Artemis I counterpart, featuring additional avionics protection for crew safety.
Just a few buildings over, the Orion stage adapter for Artemis II, with its unique docking target that mimics the target on the interim cryogenic propulsion stage to test Orion’s handling during the piloting demonstration test, is in final outfitting prior to shipment to Kennedy for launch preparations. The five-foot-tall, ring-shaped adapter is small but mighty: in addition to having space to accommodate small secondary payloads, it contains a diaphragm that acts as a barrier to prevent gases generated during launch from entering Orion.
The Artemis III Orion stage adapter’s major structure is complete and its avionics unit and diaphragm will be installed later this year.
The Orion stage adapter is complete at Marshall, including welding, painting, and installation of the secondary payload brackets, cables, and avionics unit. The adapter is protected by a special conductive paint that prevents electric arcing in space. NASA astronauts Reid Wiseman and Christina Koch viewed the hardware during a Nov. 27 visit to Marshall.NASA/Charles Beason
Beginning with Artemis IV, a new configuration of SLS, the SLS Block 1B, will use the new, more powerful exploration upper stage to enable more ambitious missions to deep space. The new stage requires new adapters.
The cone-shaped payload adapter – containing two aluminum rings and eight composite panels made from a graphite epoxy material – will be housed inside the universal stage adapter atop the rocket’s exploration upper stage.
The payload adapter test article is being twisted, shaken, and placed under extreme pressure to check its structural strength as part of testing at Marshall. Engineers are making minor changes to the design of the flight article, such as the removal of certain vent holes, based on the latest analyses.
SLS Block 1B’s payload adapter is an evolution from the Orion stage adapter used in the Block 1 configuration, but each will be unique and customized to fit individual mission needs. “Both the Orion stage adapter and the payload adapter are being assembled in the same room at Marshall,” said Brent Gaddes, lead for the Orion stage adapter in the Spacecraft/Payload Integration & Evolution Office at Marshall. “So, there’s a lot of cross-pollination between teams.”NASA/Sam Lott
The sixth adapter at Marshall is a development test article of the universal stage adapter, which will be the largest composite structure from human spaceflight missions ever flown at 27.5 feet in diameter and 32 feet long. It is currently undergoing modal and structural testing to ensure it is light, strong, and ready to connect SLS Block 1B’s exploration upper stage to Orion.
“Every pound of structure is equal to a pound of payload,” says Tom Krivanek, universal stage adapter sub-element project manager at NASA’s Glenn Research Center. Glenn manages the adapter for the agency. “That’s why it’s so valuable that the universal stage adapter be as light as possible. The universal stage adapter separates after the translunar insertion, so NASA will need to demonstrate the ability to separate cleanly in orbit in very cold conditions.”
With its multipurpose testing equipment, innovative manufacturing processes, and large-scale integration facilities, Marshall facilities and capabilities enable teams to process composite hardware elements for multiple Artemis missions in parallel, providing for cost and schedule savings.
Unlike the flight hardware, the universal stage adapter’s development test article has flaws intentionally included in its design to test if fracture toughness predictions are correct. Technicians are incorporating changes for the next test article, including alterations to the vehicle damping system mitigating vibrations on the launch pad.NASA/Brandon Hancock
Lessons learned from testing and manufacturing hardware for the first three SLS flights in the Block 1 configuration have aided in designing and integrating the SLS Block 1B configuration.
Both adapters for the SLS Block 1 are manufactured using friction stir welding in Marshall’s Materials and Processes Laboratory, a process that very reliably produces materials that are typically free of flaws.
Pioneering techniques such as determinant assembly and digital tooling ensure an efficient and uniform manufacturing process and save NASA and its partners money and time when building Block 1B’s payload adapter. Structured light scanning maps each panel and ring individually to create a digital model informing technicians where holes should be drilled.
“Once the holes are put in with a hand drill located by structured light, it’s simply a matter of holding the pieces together and dropping fasteners in place,” Gaddes said. “It’s kind of like an erector set.”
From erector sets to the Moon and beyond – the principles of engineering are the same no matter what you are building.
› Back to Top
Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io
New findings from NASA’s Juno probe provide a fuller picture of how widespread the lava lakes are on Jupiter’s moon Io and include first-time insights into the volcanic processes at work there. These results come courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency, which “sees” in infrared light. Researchers published a paper on Juno’s most recent volcanic discoveries on June 20 in the journal Nature Communications Earth and Environment.
The JunoCam instrument aboard NASA’s Juno spacecraft captured two volcanic plumes rising above the horizon of Jupiter’s moon Io. The image was taken Feb. 3 from a distance of about 2,400 miles.Image data: NASA/JPL-Caltech/SwRI/MSSS, Image processing by Andrea Luck (CC BY)
Io has intrigued the astronomers since 1610, when Galileo Galilei first discovered the Jovian moon, which is slightly larger than Earth’s Moon. Some 369 years later, NASA’s Voyager 1 spacecraft captured a volcanic eruption on the moon. Subsequent missions to Jupiter, with more Io flybys, discovered additional plumes – along with lava lakes. Scientists now believe Io, which is stretched and squeezed like an accordion by neighboring moons and massive Jupiter itself, is the most volcanically active world in the solar system. But while there are many theories on the types of volcanic eruptions across the surface of the moon, little supporting data exists.
In both May and October 2023, Juno flew by Io, coming within about 21,700 miles and 8,100 miles, respectively. Among Juno’s instruments getting a good look at the beguiling moon was JIRAM.
Designed to capture the infrared light (which is not visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the weather layer down to 30 to 45 miles below the gas giant’s cloud tops. But during Juno’s extended mission, the mission team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto. The JIRAM Io imagery showed the presence of bright rings surrounding the floors of numerous hot spots.
“The high spatial resolution of JIRAM’s infrared images, combined with the favorable position of Juno during the flybys, revealed that the whole surface of Io is covered by lava lakes contained in caldera-like features,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “In the region of Io’s surface in which we have the most complete data, we estimate about 3% of it is covered by one of these molten lava lakes.” (A caldera is a large depression formed when a volcano erupts and collapses.)
JIRAM’s Io flyby data not only highlights the moon’s abundant lava reserves, but also provides a glimpse of what may be going on below the surface. Infrared images of several Io lava lakes show a thin circle of lava at the border, between the central crust that covers most of the lava lake and the lake’s walls. Recycling of melt is implied by the lack of lava flows on and beyond the rim of the lake, indicating that there is a balance between melt that has erupted into the lava lakes and melt that is circulated back into the subsurface system.
Infrared data collected Oct. 15, 2023, by the JIRAM instrument aboard NASA’s Juno shows Chors Patera, a lava lake on Jupiter’s moon Io. The team believes the lake is largely covered by a thick, molten crust, with a hot ring around the edges where lava from Io’s interior is directly exposed to space.NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM/MSSS
“We now have an idea of what is the most frequent type of volcanism on Io: enormous lakes of lava where magma goes up and down,” Mura said. “The lava crust is forced to break against the walls of the lake, forming the typical lava ring seen in Hawaiian lava lakes. The walls are likely hundreds of meters high, which explains why magma is generally not observed spilling out of the paterae” – bowl-shaped features created by volcanism – “and moving across the moon’s surface.”
JIRAM data suggests that most of the surface of these Io hot spots is composed of a rocky crust that moves up and down cyclically as one contiguous surface due to the central upwelling of magma. In this hypothesis, because the crust touches the lake’s walls, friction keeps it from sliding, causing it to deform and eventually break, exposing lava just below the surface.
An alternative hypothesis ******** in play: Magma is welling up in the middle of the lake, spreading out and forming a crust that sinks along the rim of the lake, exposing lava.
“We are just starting to wade into the JIRAM results from the close flybys of Io in December 2023 and February 2024,” said Scott Bolton, principal investigator for Juno at the Southwest Research Institute in San Antonio. “The observations show fascinating new information on Io’s volcanic processes. Combining these new results with Juno’s longer-term campaign to monitor and map the volcanoes on Io’s never-before-seen north and south poles, JIRAM is turning out to be one of the most valuable tools to learn how this tortured world works.”
Juno ********* its 62nd flyby of Jupiter – which included an Io flyby at an altitude of about 18,175 miles – on June 13. The 63rd flyby of the gas giant is scheduled for July 16.
NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.
› Back to Top
Surprising Phosphate Finding in NASA’s OSIRIS-REx Asteroid Sample
Scientists have eagerly awaited the opportunity to dig into the 4.3-ounce (121.6-gram) pristine asteroid Bennu sample collected by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission since it was delivered to Earth last fall. They hoped the material would hold secrets of the solar system’s past and the prebiotic chemistry that might have led to the origin of life on Earth. An early analysis of the Bennu sample, published June 26 in Meteoritics & Planetary Science, demonstrates this excitement was warranted.
A tiny fraction of the asteroid Bennu sample returned by NASA’s OSIRIS-REx mission, shown in microscope images. The top-left pane shows a dark Bennu particle, about a millimeter long, with an outer crust of bright phosphate. The other three panels show progressively zoomed-in views of a fragment of the particle that split off along a bright vein containing phosphate, captured by a scanning electron microscope.From Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science, doi:10.1111/maps.14227.
The OSIRIS-REx Sample Analysis Team found that Bennu contains the original ingredients that formed our solar system. The asteroid’s dust is rich in carbon and nitrogen, as well as organic compounds, all of which are essential components for life as we know it. The sample also contains magnesium-sodium phosphate, which was a surprise to the research team, because it wasn’t seen in the remote sensing data collected by the spacecraft at Bennu. Its presence in the sample hints that the asteroid could have splintered off from a long-gone, tiny, primitive ocean world.
Analysis of the Bennu sample unveiled intriguing insights into the asteroid’s composition. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth, where material from the mantle, the layer beneath Earth’s crust, encounters water.
This interaction doesn’t just result in clay formation; it also gives rise to a variety of minerals like carbonates, iron oxides, and iron sulfides. But the most unexpected discovery is the presence of water-soluble phosphates. These compounds are components of biochemistry for all known life on Earth today.
While a similar phosphate was found in the asteroid Ryugu sample delivered by JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission in 2020, the magnesium-sodium phosphate detected in the Bennu sample stands out for its purity – that is, the lack of other materials in the mineral – and the size of its grains, unprecedented in any meteorite sample.
The finding of magnesium-sodium phosphates in the Bennu sample raises questions about the geochemical processes that concentrated these elements and provides valuable clues about Bennu’s historic conditions.
“The presence and state of phosphates, along with other elements and compounds on Bennu, suggest a watery past for the asteroid,” said Dante Lauretta, co-lead author of the paper and principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “Bennu potentially could have once been part of a wetter world. Although, this hypothesis requires further investigation.”
“OSIRIS-REx gave us exactly what we hoped: a large pristine asteroid sample rich in nitrogen and carbon from a formerly wet world,” said Jason Dworkin, a co-author on the paper and the OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center.
Despite its possible history of interaction with water, Bennu ******** a chemically primitive asteroid, with elemental proportions closely resembling those of the Sun.
“The sample we returned is the largest reservoir of unaltered asteroid material on Earth right now,” Lauretta said.
This composition offers a glimpse into the early days of our solar system, over 4.5 billion years ago. These rocks have retained their original state, having neither melted nor resolidified since their inception, affirming their ancient origins.
The team has confirmed the asteroid is rich in carbon and nitrogen. These elements are crucial in understanding the environments where Bennu’s materials originated and the chemical processes that transformed simple elements into complex molecules, potentially laying the groundwork for life on Earth.
“These findings underscore the importance of collecting and studying material from asteroids like Bennu – especially low-density material that would typically ***** up upon entering Earth’s atmosphere,” Lauretta said. “This material holds the key to unraveling the intricate processes of solar system formation and the prebiotic chemistry that could have contributed to life emerging on Earth.”
Dozens more labs in the ******* States and around the world will receive portions of the Bennu sample from NASA’s Johnson Space Center in the coming months, and many more scientific papers describing analyses of the Bennu sample are expected in the next few years from the OSIRIS-REx Sample Analysis Team.
“The Bennu samples are tantalizingly beautiful extraterrestrial rocks,” said Harold Connolly, co-lead author on the paper and OSIRIS-REx mission sample scientist at Rowan University in Glassboro, New Jersey. “Each week, analysis by the OSIRIS-REx Sample Analysis Team provides new and sometimes surprising findings that are helping place important constraints on the origin and evolution of Earth-like planets.”
Launched on Sept. 8, 2016, the OSIRIS-REx spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface. OSIRIS-REx, the first U.S. mission to collect a sample from an asteroid, delivered the sample to Earth on Sept. 24, 2023.
NASA’s Goddard Space Flight Center provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (********* Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate.
› Back to Top
Webb Captures Celestial Fireworks Around Forming Star
The cosmos seems to come alive with a crackling ********** of pyrotechnics in this new image from NASA’s James Webb Space Telescope. Taken with Webb’s MIRI (Mid-Infrared Instrument), this fiery hourglass marks the scene of a very young object in the process of becoming a star. A central protostar grows in the neck of the hourglass, accumulating material from a thin protoplanetary disk, seen edge-on as a dark line.
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules. This image includes filters representing 7.7 microns light as blue, 12.8 microns light as green, and 18 microns light as red. NASA, ESA, CSA, STScI
The protostar, a relatively young object of about 100,000 years, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera), allowed us to peer into this region and revealed this molecular cloud and protostar in opaque, vibrant colors.
Both NIRCam and MIRI show the effects of outflows, which are emitted in opposite directions along the protostar’s rotation axis as the object consumes gas and dust from the surrounding cloud. These outflows take the form of bow shocks to the surrounding molecular cloud, which appear as filamentary structures throughout. They are also responsible for carving the bright hourglass structure within the molecular cloud as they energize, or excite, the surrounding matter and cause the regions above and below it to glow. This creates an effect reminiscent of fireworks brightening a cloudy night sky. Unlike NIRCam, however, which mostly shows the light that is reflected off dust, MIRI provides a look into how these outflows affect the region’s thickest dust and gases.
The areas ******** here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescope’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.
As the protostar continues to age and release energetic jets, it’ll consume, ********, and push away much of this molecular cloud, and many of the structures we see here will begin to fade. Eventually, once it finishes gathering mass, this impressive display will end, and the star itself will become more apparent, even to our visible-light telescopes.
The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (********* Space Agency) and CSA (********* Space Agency). Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.
› Back to Top
Enhancing Decision-Making with NASA SPoRT: From Earth Science to Action
By Paola Pinto
During summer months, lightning-related injuries and fatalities rise mainly because of the increase in outdoor activities. Staying informed and cautious is crucial to ensure safety during these times. That is why making timely decisions and preventing potential hazards using tools like the Stoplight Product from NASA’s Short-term Prediction Research and Transition (SPoRT) Center is so important.
Fatal lightning incidents by month according to the National Lightning Safety Council. NASA/National Lightning Safety Council
For instance, at last year’s Rock the South concert in Cullman, Alabama, the National Weather Service (NWS) in Huntsville used the Stoplight Product to effectively communicate the lightning threat to concert emergency managers, demonstrating its practical application in safeguarding public events.
The popular sayings, “When thunder roars, go indoors” and “See a flash, dash inside,” are common reactive responses to severe weather. According to NOAA’s lightning safety protocols, waiting 30 minutes after the last lightning strike is recommended before resuming outdoor activities. However, tools like the Stoplight Product provide real-time lightning activity data, helping individuals and organizations make informed safety choices before weather conditions worsen. Whether for outdoor events, construction sites, or recreational activities, this product enables people to easily determine when lightning was last detected in their area, ensuring better safety and preparedness.
In collaboration with NASA Marshall Space Flight Center’s Emergency Operations Center and the National Weather Service in Huntsville, SPoRT has developed innovative tools like the Stoplight Product to empower communities and organizations to take proactive preventive measures. SPoRT’s tools are part of a broader effort to transition research findings into practical applications that benefit forecasters and communities.
Kelley Murphy, a research associate at the University of Alabama in Huntsville, frequently interacts with users to train them on how to use the NASA SPoRT Stoplight Product during convective weather events. She said the tool leverages data from the Geostationary Lightning Mapper (GLM) on NOAA’s GOES-16 satellite, which continuously monitors lightning over the ******* States with high resolution. The Stoplight Product visually represents recent lightning activity to help users make informed decisions about outdoor safety.
Murphy said the Stoplight Product uses GLM Flash Extent Density data to determine the age and location of lightning flashes. GLM pixels are ******** based on how recently lightning occurred, creating an easy-to-interpret visual aid of lightning within the last 30 minutes. Red indicates lightning within the last 10 minutes, yellow for 10-20 minutes, and green for 20-30 minutes, with the ****** disappearing after 30 minutes without lightning. There is also an option for ******-****** users embedded in the tool.
Kristopher White is the Applications Integration Meteorologist and senior forecaster at the Huntsville NWS office, spending half his time with NASA SPoRT. White plays a key role in transitioning research into operational use, coordinating the use of these tools within the NWS, and ensuring that forecasters are trained and equipped to utilize them effectively.
NASA SPoRT Stoplight Product visually represents recent lightning activity to help users make informed decisions about outdoor safety. NASA
White said this product has received positive feedback from various NWS offices across the U.S. Forecasters have reported utilizing the tool to monitor storms and make decisions during events, emphasizing its practical value in real-world scenarios.
One forecaster from NWS Raleigh noted that they were able to warn about lightning at a 1000+ attendee event; “We were able to alert them that lightning was nearby and then gave the all-clear once it moved out of the critical area.” Another forecaster from NWS Sullivan stated, “There’s a lot of good stuff out there that we’re using to paint the picture for us and the decision-makers, but the GLM Stoplight Product has been one of our ‘go-to’s’ for assessing how long it’s been since the last flash.” This ability to provide real-time lightning information aids forecasters in relaying crucial data to emergency managers, supporting public safety efforts.
Looking ahead, the SPoRT team is working on enhancements to the Stoplight Product, incorporating ground-based lightning detection data to improve accuracy. This new version seeks to address issues such as the parallax effect, where the satellite’s perspective can slightly shift the perceived location of lightning strikes. By combining satellite and ground-based data, the improved product will offer more precise information, enhancing its utility for lightning safety.
As we move through the peak months of the lightning season – June, July, and August – tools like these become even more helpful. Murphy and White stress the value of using these resources for professional meteorologists and the public. The Stoplight Product is GPS-enabled and available in a custom viewer that can be accessed on both computers and mobile devices, allowing individuals to make safer choices when engaging in outdoor activities, particularly during the summer weather.
On their seasonal outlook, NOAA’s Climate Prediction Center suggests above-normal precipitation for much of the Southeast and Eastern Seaboard this year, which could imply increased lightning activity. This emphasizes the need for reliable tools to mitigate lightning-related risks.
Lightning Safety Awareness Week, from June 23-29, highlighted the importance of taking safety measures during peak lightning season. SPoRT’s Stoplight Product and other tools represent significant advancements in lightning detection and decision support, helping forecasters and the public stay informed and safe. As we navigate this season, utilizing these resources will be essential in reducing the impact of lightning-related hazards.
Pinto is a research associate at the University of Alabama in Huntsville, with a focus on communications, supporting NASA SPoRT.
› Back to Top
View the full article
July 3, 2024
RELEASE: J24-011
Former Chief Astronaut Patrick Forrester NASA
NASA astronaut Patrick G. Forrester retired June 29, after a career spanning 31 years of service and three spaceflights. He went on to become chief of NASA’s Astronaut Office, and most recently served as an advisor to the associate administrator for the Space Operations Mission Directorate at NASA Headquarters in Washington.
Forrester joined the agency in 1993 as an aerospace engineer at NASA’s Johnson Space Center in Houston and was selected to become an astronaut in 1996. He dedicated his early career to the assembly of the International Space Station, spending 40 days in space and completing four spacewalks totaling 25 hours and 30 minutes.
“Pat’s dedication and commitment to the advancement of human space exploration over the past three decades has been an inspiration, not just to the Johnson workforce, but the Artemis generation as well,” said NASA’s Johnson Space Center Director Vanessa Wyche. “I want to extend my sincere gratitude to Pat for his outstanding contributions. His legacy will continue to impact the agency and the next generation of explorers for many years to come. Many congratulations to Pat; I wish him all the best in his retirement.”
Forrester launched to the space station for the first time in August 2001 aboard space shuttle Discovery in support of STS-105. Forrester was the mission’s prime robotics operator, helping to install the Leonardo Multi-Purpose Logistics Module that would help deliver 2.7 metric tons of supplies to the station. He flew again with STS-117 in June 2007 aboard space shuttle Atlantis, delivering the orbiting laboratory’s second starboard truss and its third set of solar arrays. His final spaceflight, STS-128 aboard Discovery, launched in August 2009. As prime robotics officer, Forrester again installed Leonardo and the crew transferred 18,000 pounds of supplies.
Forrester continued to support the astronaut corps through numerous leadership positions, serving as technical assistant to the director of Flight Crew Operations. He was a crew representative of robotics development on the space station and shuttle training and onboard crew procedures. Forrester also held the role of spacecraft communicator, or CAPCOM, for both station and shuttle missions.
In 2017, Forrester became chief of the Astronaut Office, overseeing the first flights of NASA’s Commercial Crew Program and helping develop the initial architecture for the agency’s Artemis campaign. In 2020, he stepped down from his chief position, handing over to NASA astronaut Reid Wiseman.
“Pat’s leadership was instrumental during a time where NASA was just starting to launch our astronauts from ********* soil again,” said Norm Knight, director of flight operations at NASA Johnson. “I admire his courage, his tenacity, and his character during such a dynamic time in our history, and I thank him for laying a strong foundation, not just in his role as chief astronaut, but through his career in human spaceflight. To me, he is a mentor and a friend, and I wish him all the best.”
At the time of his retirement, Forrester supported the Space Operations Mission Directorate, serving as the director of the Cross-Directorate Technical Integration Office and an adviser to the directorate’s associate administrator and fellow NASA astronaut Ken Bowersox.
“Pat is an incredible leader who has provided invaluable service to NASA’s astronaut corps and human spaceflight during his career,” said Ken Bowersox, associate administrator for space operations at NASA. “In the Space Operations Mission Directorate, his influence will be felt long after his departure as we continue to work every day in low Earth orbit and prepare for the future near Earth, at the Moon, Mars and into the solar system.”
An El Paso, Texas, native, Forrester earned a bachelor of science degree in applied sciences and engineering from the U.S. Military Academy, West Point, New York, and a master of science in mechanical and aerospace engineering from the University of Virginia, Charlottesville. A retired colonel in the U.S. Army, Forrester logged more than 5,300 hours of flight time in over 50 different aircraft as an operational aviator and test pilot, retiring in 2005.
“It has been an honor to serve our nation as a member of the NASA family. Many of the stories I will tell for the rest of my life will be related to my experiences here,” said Forrester. “I look forward to watching my friends and colleagues circle the Moon and eventually land on its surface – with the help of all those serving faithfully on the ground. I am forever grateful.”
Read Forrester’s full biography at:
[Hidden Content]
-end-
Chelsey Ballarte Johnson Space Center, Houston 281-483-5111 *****@*****.tld
View the full article
NASA/Radislav Sinyak
Technicians lift NASA’s Orion spacecraft out of the Final Assembly and System Testing cell on June 28, 2024. The integrated spacecraft, which will be used for the Artemis II mission to orbit the Moon, has been undergoing final rounds of testing and assembly, including end-to-end performance verification of its subsystems and checking for leaks in its propulsion systems.
A 30-ton crane returned Orion into the recently renovated altitude chamber where it underwent electromagnetic testing. The spacecraft now will undergo a series of tests that will subject it to a near-vacuum environment by removing air, thus creating a space where the pressure is extremely low. This results in no atmosphere, similar to the one the spacecraft will experience during future lunar missions. The data recorded during these tests will be used to qualify the spacecraft to safely fly the Artemis II astronauts through the harsh environment of space.
Get updates on the Artemis II mission.
Image Credit: NASA/Radislav Sinyak
View the full article
NASA astronaut Andre Douglas poses for a portrait at NASA’s Johnson Space Center in Houston.Credits: NASA/Josh Valcarcel
NASA has selected astronaut Andre Douglas as its backup crew member for the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
Douglas will train alongside NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and ********* Space Agency (CSA) astronaut Jeremy Hansen.
In the event a NASA astronaut is unable to take part in the flight, Douglas would join the Artemis II crew.
“Andre’s educational background and extensive operational experience in his various jobs prior to joining NASA are clear evidence of his readiness to support this mission,” said Joe Acaba, chief astronaut at NASA’s Johnson Space Center in Houston. “He excelled in his astronaut candidate training and technical assignments, and we are confident he will continue to do so as NASA’s backup crew member for Artemis II.”
The CSA announced Jenni Gibbons as its backup crew member in November 2023. Gibbons would step into the mission to represent Canada should Hansen not be available.
“Canada’s seat on the historic Artemis II flight is a direct result of our contribution of Canadarm3 to the lunar Gateway. Jenni Gibbons’ assignment as backup is of utmost importance for our country,” said CSA President Lisa Campbell. “Since being recruited, Jenni has distinguished herself repeatedly through her work with NASA and the CSA. She is also a tremendous role model for Canada’s future scientists, engineers, and explorers.”
The selection of Douglas and Gibbons as backup crew members for Artemis II is independent of the selection of crew members for Artemis III. NASA has not yet selected crew members for Artemis flights beyond Artemis II. All active NASA astronauts are eligible for assignment to any human spaceflight mission.
The approximately 10-day Artemis II test flight will launch on the agency’s powerful SLS (Space Launch System) rocket, prove the Orion spacecraft’s life-support systems, and validate the capabilities and techniques needed for humans to live and work in deep space.
More on Artemis II backup crew
Douglas graduated from NASA’s astronaut candidate training program in March 2024. He is a Virginia native and earned a bachelor’s degree in Mechanical Engineering from the U.S. Coast Guard Academy in New London, Connecticut, as well as four post-graduate degrees from various institutions, including a doctorate in Systems Engineering from George Washington University in Washington. Douglas served in the U.S. Coast Guard as a naval architect, salvage engineer, damage control assistant, and officer of the deck. He also worked as a staff member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, working on maritime robotics, planetary defense, and space exploration missions for NASA. Douglas participated in the ****** EVA and Human Surface Mobility Test Team 5, working with a specialized group that develops, integrates, and executes human-in-the-loop tests, analog missions, and Moonwalks. Most recently, Douglas worked with teams on the development of the lunar terrain vehicle, pressurized rover, lunar Gateway and lunar spacesuit.
Gibbons was recruited as a CSA astronaut in 2017 and completed her basic training in 2020. Since then, Gibbons has continued to serve Canada’s space program and has worked in different positions, including Mission Control as a capsule communicator (CAPCOM) during spacewalks, and commercial spacecraft and daily International Space Station operations. Gibbons holds an honors bachelor’s degree in Mechanical Engineering from McGill University in Montreal. While at McGill, she conducted research on flame propagation in microgravity in collaboration with CSA and Canada’s National Research Council Flight Research Laboratory in Ontario. She holds a doctorate in engineering from ****** College at the University of Cambridge, England.
Under NASA’s Artemis campaign, the agency is establishing the foundation for long-term scientific exploration at the Moon, land the first woman, first person of ******, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
Learn more about NASA’s Artemis campaign at:
[Hidden Content]
-end-
Rachel Kraft/Madison Tuttle Headquarters, Washington 202-358-1100 rachel.h*****@*****.tld/madison.e*****@*****.tld
Courtney Beasley Johnson Space Center, Houston 281-483-5111 *****@*****.tld
Share
Details
Last Updated
Jul 03, 2024
LocationNASA Headquarters
Related TermsArtemis 2Andre DouglasArtemisAstronautsHumans in Space
View the full article
The Goldstone Solar System Radar, part of NASA’s Deep Space Network, made these observations of the recently discovered 500-foot-wide (150-meter-wide) asteroid 2024 MK, which made its closest approach — within about 184,000 miles (295,000 kilometers) of Earth — on June 29.NASA/JPL-Caltech
The Deep Space Network’s Goldstone planetary radar had a busy few days observing asteroids 2024 MK and 2011 UL21 as they safely passed Earth.
Scientists at NASA’s Jet Propulsion Laboratory in Southern California recently tracked two asteroids as they flew by our planet. One turned out to have a little moon orbiting it, while the other had been discovered only 13 days before its closest approach to Earth. There was no risk of either near-Earth object impacting our planet, but the radar observations taken during these two close approaches will provide valuable practice for planetary defense, as well as information about their sizes, orbits, rotation, surface details, and clues as to their composition and formation.
Passing Earth on June 27 at a distance of 4.1 million miles (6.6 million kilometers), or about 17 times the distance between the Moon and Earth, the asteroid 2011 UL21 was discovered in 2011 by the NASA-funded Catalina Sky Survey, in Tucson, Arizona. But this is the first time it has come close enough to Earth to be imaged by radar. While the nearly mile-wide (1.5-kilometer-wide) object is classified as being potentially hazardous, calculations of its future orbits show that it won’t pose a threat to our planet for the foreseeable future.
Because close approaches by asteroids the size of 2024 MK are relatively rare, JPL’s planetary radar team gathered as much information about the near-Earth object as possible. This mosaic shows the spinning asteroid in one-minute increments about 16 hours after its closest approach with Earth.NASA/JPL-Caltech
Using the Deep Space Network’s 230-foot-wide (70-meter) Goldstone Solar System Radar, called Deep Space Station 14 (DSS-14), near Barstow, California, JPL scientists transmitted radio waves to the asteroid and received the reflected signals by the same antenna. In addition to determining the asteroid is roughly spherical, they discovered that it’s a binary system: A smaller asteroid, or moonlet, orbits it from a distance of about 1.9 miles (3 kilometers).
“It is thought that about two-thirds of asteroids of this size are binary systems, and their discovery is particularly important because we can use measurements of their relative positions to estimate their mutual orbits, masses, and densities, which provide key information about how they may have formed,” said Lance Benner, principal scientist at JPL who helped lead the observations.
These seven radar observations by the Deep Space Network’s Goldstone Solar System Radar shows the mile-wide asteroid 2011 UL21 during its June 27 close approach with Earth from about 4 million miles away. The asteroid and its small moon (a bright dot at the bottom of the image) are circled in white.NASA/JPL-Caltech
Second Close Approach
Two days later, on June 29, the same team observed the asteroid 2024 MK pass our planet from a distance of only 184,000 miles (295,000 kilometers), or slightly more than three-quarters of the distance between the Moon and Earth. About 500 feet (150 meters) wide, this asteroid appears to be elongated and angular, with prominent flat and rounded regions. For these observations, the scientists also used DSS-14 to transmit radio waves to the object, but they used Goldstone’s 114-foot (34-meter) DSS-13 antenna to receive the signal that bounced off the asteroid and came back to Earth. The result of this “bistatic” radar observation is a detailed image of the asteroid’s surface, revealing concavities, ridges, and boulders about 30 feet (10 meters) wide.
Close approaches of near-Earth objects the size of 2024 MK are relatively rare, occurring about every couple of decades, on average, so the JPL team sought to gather as much data about the object as possible. “This was an extraordinary opportunity to investigate the physical properties and obtain detailed images of a near-Earth asteroid,” said Benner.
This sunset photo shows NASA’s Deep Space Station 14 (DSS-14), the 230-foot-wide (70-meter) antenna at the Goldstone Deep Space Communications Complex near Barstow, California.NASA/JPL-Caltech
The asteroid 2024 MK was first reported on June 16 by the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) at Sutherland Observing Station in South *******. Its orbit was changed by Earth’s gravity as it passed by, reducing its 3.3-year orbital ******* around the Sun by about 24 days. Although it is classified as a potentially hazardous asteroid, calculations of its future motion show that it does not pose a threat to our planet for the foreseeable future.
The Goldstone Solar System Radar Group is supported by NASA’s Near-Earth Object Observations Program within the Planetary Defense Coordination Office at the agency’s headquarters in Washington. Managed by JPL, the Deep Space Network receives programmatic oversight from Space Communications and Navigation program office within the Space Operations Mission Directorate, also at NASA Headquarters.
More information about planetary radar and near-Earth objects can be found at:
[Hidden Content]
News Media Contact
Ian J. O’Neill Jet Propulsion Laboratory, Pasadena, Calif. 818-354-2649 *****@*****.tld
2024-097
Share
Details
Last Updated
Jul 03, 2024
Related TermsNear-Earth Asteroid (NEA)AsteroidsDeep Space NetworkJet Propulsion LaboratoryPlanetary DefensePlanetary Defense Coordination OfficePotentially Hazardous Asteroid (PHA)Space Communications & Navigation Program
Explore More
3 min read
NASA’s ECOSTRESS Maps ***** Risk Across Phoenix Streets
Article
18 hours ago
5 min read
NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise
Article
22 hours ago
5 min read
NASA’s NEOWISE Infrared Heritage Will Live On
Article
2 days ago
View the full article
It may seem remarkable that no ********* spent the Fourth of July holiday in space for the first 21 years of human spaceflight. Not until 1982 and the 35th U.S. human spaceflight did Americans awaken in space on Independence Day, and then bring their spacecraft back to Earth later in the day to a rousing welcome by the President of the ******* States. Another 10 years elapsed before more Americans found themselves in orbit on July 4. But as flight rates and crew sizes increased, and as Americans began living and working aboard space stations, spending the holiday in orbit turned into an annual event, celebrated with crew members from other nations. Through 2024, 73 Americans have celebrated Independence Day in space, eight of them twice, each in a unique style.
July 4, 1982 – A tale of three shuttles. Left: Space shuttle Columbia makes a touchdown at Edwards Air Force Base (AFB) in California to end the STS-4 mission. Middle: With space shuttle Enterprise as a backdrop, President Ronald W. Reagan, First Lady Nancy Reagan, and NASA Administrator James M. Beggs welcome home STS-4 astronauts Thomas K. “TK” Mattingly and Henry W. Hartsfield. Right: Space shuttle Challenger departs Edwards AFB atop its Shuttle Carrier Aircraft on its way to NASA’s Kennedy Space Center in Florida.
For the first 21 years of human spaceflight, no ********* astronaut had spent a Fourth of July in space. That all changed with the STS-4 mission. On July 4, 1982, the final day of their flight, astronauts Thomas K. ‘TK’ Mattingly and Henry W. “Hank” Hartsfield guided space shuttle Columbia to its first concrete runway landing at Edwards Air Force Base in California. President Ronald W. Reagan, who two years later instructed NASA to develop a space station, and First Lady Nancy Reagan greeted Mattingly and Hartsfield on the runway as they disembarked from Columbia. Shortly thereafter, the President led a celebration in front of space shuttle Enterprise, saying, “TK and Hank, you’ve just given the ********* people a Fourth of July present to remember.“ To cap off the event attended by 45,000 people and broadcast live on television, President Reagan gave the signal for the Shuttle Carrier Aircraft carrying Challenger, NASA’s newest space shuttle orbiter, to take off to begin its transcontinental ferry flight to NASA’s Kennedy Space Center (KSC) in Florida.
Left: The STS-50 crew in July 1992. Right: The international STS-71 crew in July 1995.
Ten years passed before ********* astronauts once again celebrated the Fourth of July holiday in space. The seven astronauts of STS-50 had completed about half of their 14-day USML-1 mission on July 4, 1992, but the busy pace of the science flight allowed little time for celebrations. Three years later, 10 people orbited the Earth during the historic STS-71 first shuttle docking mission to the Mir space station. In fact, on July 4, 1995, space shuttle Atlantis undocked from Mir, returning NASA astronaut Norman E. Thagard and his two cosmonaut colleagues from a four-month mission aboard Mir. By coincidence, for NASA astronauts Bonnie J. Dunbar and Ellen S. Baker, this marked their second Fourth of July in space as they both served on the STS-50 crew three years earlier. The day’s undocking activities left little time for celebrating, although Mission Control played “America the Beautiful” as the wake-up song that morning. To satisfy Thagard’s request, following their landing at KSC, ground teams treated him and his colleagues to some belated Fourth of July fare of hot dogs, hamburgers, and hot fudge sundaes.
July 4, 1996. Left: Shannon W. Lucid aboard the space station Mir. Right: Susan J. Helms in the Spacelab module during the STS-78 mission.
Following Thagard, six other NASA astronauts completed long-duration missions aboard Mir. From March to September 1996, Shannon W. Lucid spent six months aboard the Russian station and as the lone ********* on the Mir 21 crew, she celebrated the Fourth of July by wearing distinctive Stars-and-Stripes socks. Elsewhere in low Earth orbit, with much of their 17-day Life and Microgravity Sciences mission behind them, the international crew of STS-78 celebrated the Fourth of July holiday aboard space shuttle Columbia. By sheer coincidence, astronaut Susan J. Helms wore Stars-and-Stripes socks identical to Lucid’s.
July 4, 1997. Left: C. Michael Foale aboard the space station Mir. Right: The STS-94 crew aboard space shuttle Columbia.
In 1997, C. Michael Foale took his turn as the resident NASA astronaut aboard Mir. On June 25, a Progress cargo vehicle collided with the station, depressurizing its Spektr module, the one Foale used as sleeping quarters and as a laboratory. On July 4, Foale and his two cosmonaut colleagues, still dealing with the accident’s aftermath and preparing to receive a new cargo craft with critical supplies, did not have time for celebrations. Foale spoke with NASA Administrator Daniel S. Goldin, who called to check on his status and wish him a happy holiday. Concurrently, the seven-member all-NASA STS-94 crew also spent July 4, 1997, in space during the Microgravity Science Laboratory mission aboard space shuttle Columbia. With eight NASA astronauts in orbit, although aboard two spacecraft, this still holds the record as the largest number of Americans off-planet on a Fourth of July.
Left: July 4, 2001. Expedition 2 crew members NASA astronauts Susan J. Helms, left, and James S. Voss. Middle: July 4, 2006. The crew of STS-121 wave ********* (and one *******) flags as they depart crew quarters for their Fourth of July launch. Right: July 4, 2010. NASA astronauts Douglas H. Wheelock, Tracy Caldwell Dyson, and Shannon Walker of Expedition 24.
The start of continuous human habitation aboard the International Space Station in November 2000 has meant that every year since, at least one ********* astronaut has spent the Independence Day holiday in space. James S. Voss and Susan J. Helms of Expedition 2, the first NASA astronauts to spend the Fourth of July aboard the space station in July 2001, sent an “out of this world” birthday message to America, played during “A Capitol Fourth” celebration in Washington, D.C. For Helms, this marked her second July 4 spent in space in five years. For each of the next eight years, crew rotations and other factors resulted in only one NASA astronaut residing aboard the space station during the Fourth of July holiday. Celebrations tended to be low key, but the entire crew regardless of nationality had the day off from their regular duties. July 4, 2006, marked the first and so far only time that an ********* crewed spacecraft launched on Independence Day, the liftoff like a giant birthday candle. As they left crew quarters for the ride to the launch pad, the seven-member crew of STS-121 waved flags, six ********* and one *******, for the ********* Space Agency astronaut. With Jeffery N. Williams working aboard the space station, once the STS-121 crew reached orbit, the seven NASA astronauts comprised the largest number of Americans in space on Independence Day since 1997. In 2010, Expedition 24 marked the first time that three NASA astronauts, Douglas H. Wheelock, Tracy Caldwell Dyson, and Shannon Walker, celebrated the Fourth of July aboard the space station. Wheelock marked the holiday by posting a message on social media about a Congressional Medal of Honor belonging to a soldier ******* in action in Vietnam that he took to space.
July 4, 2013. Left: Expedition 36 astronaut Christopher J. Cassidy wears a T-shirt from the Four on the Fourth race in York, Maine. Right: Fellow Expedition 36 astronaut Karen L. Nyberg displays her Fourth of July creation of a cookie she iced in the colors of the ********* flag.
For Independence Day 2013, Expedition 36 astronaut Christopher J. Cassidy chose to run in the Four on the 4th road race in his hometown of York, Maine. The fact that he lived and worked aboard the space station did not stop him from participating. Wearing the race’s T-shirt, he videotaped a message for the runners in York, and ran on the station’s treadmill, watching a video of the previous year’s race. At the end of the video message, Cassidy encouraged everyone to “celebrate our nation’s birthday with family and friends.” Cassidy and fellow Expedition 36 astronaut Karen L. Nyberg celebrated Independence Day by icing cookies in the colors of the ********* flag.
Left: July 4, 2015. NASA astronaut Scott J. Kelly records a Fourth of July message during Expedition 44. Right: July 4, 2017. During Expedition 52, NASA astronauts Jack D. Fischer and Peggy A. Whitson show off their patriotic outfits.
On July 4, 2015, NASA astronaut Scott J. Kelly, in the fourth month of his nearly one-year mission aboard the space station, recorded a Fourth of July message for Earthbound viewers. He wished everyone a Happy Independence Day and hoped that he would be able to see some of the fireworks around the country from his lofty perch, orbital mechanics permitting. As crew size aboard the space station increased and crew rotations changed, NASA astronaut Jeffrey N. Williams, celebrating his second Fourth of July in orbit during Expedition 48, holds the distinction as the last ********* to spend Independence Day alone in space on July 4, 2016. The following year, Expedition 52 astronauts Jack D. Fischer and Peggy A. Whitson recorded a whimsical video, posting it on social media, showing their patriotic attire in various poses.
Left: July 4, 2018. The Expedition 56 crew found the ********* flag originally flown aboard STS-1 and brought to the space station by STS-135. Right: July 4, 2019. Expedition 60 astronauts Christina H. Koch and Tyler N. “Nick” Hague in their finest patriotic outfits.
For Independence Day 2018, Expedition 56 astronauts Andrew J. “Drew” Feustel, Richard R. “Ricky” Arnold, and Serena M. Auñón-Chancellor retrieved a very special flag from stowage. The 8-by-12-inch ********* flag first flew into space aboard STS-1, the space shuttle’s inaugural flight, in April 1981. One of a thousand flags flown, it ended up in storage for 20 years until retrieved and flown to the space station on the space shuttle’s final mission, STS-135, in July 2011. The label on the Legacy Flag, “Only to be removed by crew launching from KSC,” referred to the next launch of ********* astronauts from ********* soil aboard an ********* spacecraft, anticipated sometime after the shuttle’s retirement aboard a commercial provider. More on this flag’s incredible journey below. For Independence Day 2019, Expedition 60 astronauts Tyler N. “Nick” Hague and Christina H. Koch, in the fourth month of her record-breaking 11-month mission, to date the longest single flight by a woman, recorded a video message for Earthbound viewers. In particular, they thanked servicemen deployed around the world and reflected on the bright future for America’s human spaceflight program.
Left: July 4, 2020. Expedition 63 astronauts Christopher J. Cassidy, left, Douglas G. Hurley, and Robert L. Behnken, hold the Legacy Flag flown on STS-1 and STS-135. Right: July 4, 2021. The Expedition 65 crew, K. Megan McArthur, left, Mark T. Vande Hei, and R. Shane Kimbrough, tapes a Fourth of July message.
During their Independence Day video message on July 4, 2020, Expedition 63 astronauts Christopher J. Cassidy, Douglas G. Hurley, and Robert L. Behnken wished Americans a happy Fourth of July, and looked ahead to future missions to the Moon and beyond. Behnken, holding the Legacy Flag that had waited for them aboard the station for nine years, added that he and Hurley would return it to the ground since they had arrived aboard the first ********* crewed vehicle to launch from ********* soil following the retirement of the space shuttle. He indicated that the flag would later return to space aboard the first ********* crewed flight to the Moon as part of the Artemis program. In their video message on July 4, 2021, Expedition 65 astronauts K. Megan McArthur, R. Shane Kimbrough, and Mark T. Vande Hei wished everyone a Happy Fourth of July and looked forward to future exploration missions to the Moon.
July 4, 2022. Left: Expedition 67 NASA astronauts Robert T. Hines, left, and Kjell N. Lindgren during their recorded Fourth of July message. Right: The Expedition 67 crew photographed the ********* flag and its patches in the space station’s Cupola.
On July 4, 2022, Expedition 67 NASA astronauts Kjell N. Lindgren, Robert T. Hines, and Jessica A. Watkins spent the holiday aboard the space station. Lindgren and Hines recorded a video message wishing everyone a happy Fourth of July holiday. Hines posted on Twitter, now X, “Happy Birthday America! The crew of [Crew Dragon] Freedom and Expedition 67 wishes everyone back home a happy Independence Day!”
Left: July 4, 2023. Expedition 69 NASA astronauts Francisco “Frank” C. Rubio, left, Stephen G. Bowen, and Warren W. “Woody” Hoburg send an Independence Day greeting. Right: July 4, 2024. Six NASA astronauts onboard the space station for Independence Day.
In 2023, Expedition 69 NASA astronauts Francisco “Frank” C. Rubio, Stephen G. Bowen, and Warren W. “Woody” Hoburg recorded a Fourth of July greeting from the space station, played during “A Capitol Fourth” celebration in Washington, D.C., wishing everyone a Happy Independence Day. July 4, 2024, finds six NASA astronauts, the largest number of Americans in space on the Fourth of July since 2006, aboard the space station, having arrived by three different vehicles – Matthew S. Dominick, Michael R. Barratt, and Jeanette J. Epps by Crew Dragon, Tracy Caldwell Dyson by Soyuz, and Barry E. “Butch” Wilmore and Sunita L. Williams by Starliner. For Barratt and Dyson, this marked their second July 4 holiday in space. In the coming years, more ********* astronauts will celebrate Independence Day aboard the space station, and one day we can look forward to some of them celebrating the holiday on or near the Moon.
Explore More
9 min read
40 Years Ago: STS-41D – First Space Shuttle Launch Pad Abort
Article
7 days ago
5 min read
The 1998 Florida Firestorm and NASA’s Kennedy Space Center
Article
7 days ago
15 min read
55 Years Ago: One Month Until the Moon Landing
Article
2 weeks ago
View the full article
The first CHAPEA mission crew members who have been living and working inside NASA’s first simulated yearlong Mars habitat mission are set to exit their ground-based home on Saturday, July 6.
The four volunteers who have been living and working inside NASA’s first simulated yearlong Mars habitat mission are set to exit their ground-based home on Saturday, July 6. NASA will provide live coverage of the crew’s exit from the habitat at NASA’s Johnson Space Center in Houston at 5 p.m. EDT.
NASA will stream the activity, which will include a short welcome ceremony, on NASA+, NASA Television, the NASA app, the agency’s website, and NASA Johnson’s X and Facebook accounts. Learn how to stream NASA TV through a variety of platforms, including social media.
The first Crew Health and Performance Exploration Analog (CHAPEA) mission began in the 3D printed habitat on June 25, 2023, with crew members Kelly Haston, Anca Selariu, Ross Brockwell, and Nathan Jones. For more than a year, the crew simulated Mars mission operations, including “Marswalks,” grew and harvested several vegetables to supplement their shelf-stable food, maintained their equipment and habitat, and operated under additional stressors a Mars crew will experience, including communication delays with Earth, resource limitations, and isolation.
In addition to the CHAPEA crew, participants include:
Steve Koerner, deputy director, NASA Johnson
Kjell Lindgren, NASA astronaut and deputy director, Flight Operations
Grace Douglas, principal investigator, CHAPEA
Judy Hayes, chief science officer, Human Health and Performance Directorate
Julie Kramer White, director of engineering
Due to facility limitations and crew quarantine requirements, NASA is unable to accommodate requests to attend the event in person. Media interested in speaking with the mission’s crew members in the days following the conclusion of their mission must send a request by 4 p.m. July 6, to the Johnson newsroom at 281-483-5111 or *****@*****.tld.
NASA is leading a return to the Moon for long-term science and exploration through the Artemis campaign. Lessons learned on and around the Moon will prepare NASA for the next giant leap – sending the first astronauts to Mars.
Learn more about CHAPEA:
[Hidden Content]
-end-
Rachel Kraft Headquarters, Washington 202-358-1600 rachel.h*****@*****.tld
Laura Sorto Johnson Space Center, Houston 281-483-5111 laura.g*****@*****.tld
View the full article
Credits: NASA
NASA has selected Space Exploration Technologies Corporation (SpaceX) of Hawthorne, California, to provide launch services for the COSI (Compton Spectrometer and Imager) mission.
The firm-fixed-price contract has a value of approximately $69 million, which includes launch services and other mission related costs. The COSI mission currently is targeted to launch August 2027 on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station.
This wide-field gamma-ray telescope will study energetic phenomena in the Milky Way and beyond, including the creation and destruction of matter and antimatter and the final stages of the lives of stars. NASA’s COSI mission will probe the origins of the Milky Way’s galactic positrons, uncover the sites of nucleosynthesis in our galaxy, perform studies of gamma-ray polarization, and find counterparts to multi-messenger sources. The compact Compton telescope combines improved sensitivity, spectral resolution, angular resolution, and sky coverage to facilitate groundbreaking science.
The mission is a collaboration between the University of California, Berkeley’s Space Sciences Laboratory, the University of California, San Diego, the Naval Research Laboratory, NASA’s Goddard Space Flight Center, and Northrop Grumman.
The COSI principal investigator-led project management team is located at the University of California, Berkeley. NASA’s Astrophysics Explorers Program at Goddard Space Flight Center in Greenbelt, Maryland, supports development of the project for the Astrophysics Division within NASA’s Science Mission Directorate. NASA’s Launch Services Program at the Kennedy Space Center in Florida is responsible for program management of the launch services.
For more information about COSI, visit:
[Hidden Content]
-end-
Tiernan Doyle Headquarters, Washington 202-358-1600 *****@*****.tld
Patti Bielling Kennedy Space Center, Florida 321-501-7575 *****@*****.tld
Share
Details
Last Updated
Jul 02, 2024
LocationNASA Headquarters
Related TermsCOSI (Compton Spectrometer and Imager)Astrophysics DivisionAstrophysics Explorers ProgramScience Mission DirectorateSpace Operations Mission Directorate
View the full article
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s ECOSTRESS instrument on June 19 recorded scorching roads and sidewalks across Phoenix where contact with skin could cause serious burns in minutes to seconds, as indicated in the legend above. NASA/JPL-Caltech
Roads and sidewalks in some areas get so hot that skin contact could result in second-degree burns.
Researchers at NASA’s Jet Propulsion Laboratory in Southern California have mapped scorching pavement in Phoenix where contact with skin — from a fall, for example — can cause serious burns. The image shows land surface temperatures across a grid of roads and adjacent sidewalks, revealing how urban spaces can turn hazardous during hot weather.
Data for this visualization of the Phoenix area — the fifth most populous city in the ******* States — was collected at 1:02 p.m. local time on June 19, 2024, by a NASA instrument aboard the International Space Station. Called ECOSTRESS (short for the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station), the instrument measures thermal infrared emissions from Earth’s surface.
The image shows how miles of asphalt and concrete surfaces (******** here in yellow, red, and purple, based on temperature) trap heat. The surfaces registered at least 120 degrees Fahrenheit (49 degrees Celsius) to the touch — hot enough to cause contact burns in minutes to seconds.
The image also shows cooling effects of green spaces in communities like Encanto and Camelback East, in contrast to the hotter surface temperatures seen in Maryvale and Central City, where there are fewer parks and trees.
“We create these maps to be intuitive to users and help make data more accessible to the public and citizens scientists,” said Glynn Hulley, a JPL climate researcher. “We see them as a vital tool for planning effective heat interventions, such as tree planting, that can cool down the hottest roads and sidewalks.”
Homing in on Heat
At the lower right of the image is Phoenix’s Sky Harbor International Airport, where ECOSTRESS recorded some of the hottest land surface temperatures within the city —around 140 F (60 C). The air temperature on June 19 at the airport reached 106 F (43 C).
Air temperature, which is measured out of direct sunlight, can differ significantly from the temperature at the land surface. Streets are often the hottest surfaces of the built environment due to dark asphalt paving that absorbs more sunlight than lighter-******** surfaces; asphalt absorbs up to 95% of solar radiation. These types of surfaces can easily be 40 to 60 degrees F (22 to 33 degrees C) hotter than the air temperature on a very hot day.
Launched to the International Space Station in 2018, ECOSTRESS has as its primary mission the identification of plants’ thresholds for water use and water stress, giving insight into their ability to adapt to a warming climate. But the instrument is also useful for documenting other heat-related phenomena, like patterns of heat absorption and retention.
To produce the image of Phoenix, scientists used a machine learning algorithm that incorporates data from additional satellites: NASA/USGS Landsat and Sentinel-2. The combined measurements were used to “sharpen” the surface temperatures to a resolution of 100 feet (30 meters) by 100 feet (30 meters).
More About the Mission
JPL built and manages the ECOSTRESS mission for the Earth Science Division in the Science Mission Directorate at NASA Headquarters in Washington. ECOSTRESS is an Earth Venture Instrument mission; the program is managed by NASA’s Earth System Science Pathfinder program at NASA’s Langley Research Center in Hampton, Virginia.
More information about ECOSTRESS is available here: [Hidden Content].
News Media Contacts
Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 *****@*****.tld / *****@*****.tld
Written by Sally Younger
2024-096
Share
Details
Last Updated
Jul 02, 2024
Related TermsEcostress (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station)Earth ScienceExtreme Weather EventsJet Propulsion LaboratoryWeather and Atmospheric Dynamics
Explore More
5 min read
NASA’s NEOWISE Infrared Heritage Will Live On
Article
22 hours ago
2 min read
NASA@ My Library and Partners Engage Millions in Eclipse Training and Preparation
The Space Science Institute, with funding from the NASA Science Mission Directorate and Gordon and…
Article
4 days ago
4 min read
NASA Parachute Sensor Testing Could Make EPIC Mars Landings
Article
5 days ago
Keep Exploring
Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.