Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    1,464
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. From pioneering space initiatives to championing diversity and innovation, Shirley Holland-Hunt’s multifaceted leadership at NASA exemplifies the future of aerospace exploration. Her efforts have driven technological advancements and advocated for the inclusion of women and minorities in STEM fields. Holland-Hunt currently serves as the associate division chief for Houston’s Johnson Space Center Aeroscience and Flight Mechanics Division, where she drives engineering design, development, testing, and evaluation for all phases of space flight. She supports the identification and establishment of center partnerships and Space Act Agreements that drive the research and development of new space exploration technology. Holland-Hunt also coordinates business activities and workforce development, including planning, programming, budgeting, and **********, as well as facility management and Johnson’s diversity, equity, inclusion, and accessibility initiatives. Holland-Hunt was a member of the Dare | Unite | Explore team that launched the “Propel the Space Economy Coalition” initiative, which supports the sustainable growth of the global space economy. Official portrait of Shirley Holland-Hunt. Credit: NASA/James Blair As an alumna of Prairie View A&M University, a Historically ****** College and University, Holland-Hunt holds a bachelor of science in Electrical Engineering and a Master of Business Administration from the University of Phoenix. She helped develop Johnson’s first Request for Information document, showcasing her pivotal role in advancing the center’s initiatives to collect data that inform future procurement actions. She also spearheaded initiatives to promote women in leadership roles. She founded the networking group “The Women of ES” within the Structural Engineering Division to help women leaders seek opportunities and gain promotions. Additionally, she launched “The Women of EG” within the Aeroscience and Flight Mechanics Division, which conducts outreach to schools to encourage ****** to pursue STEM careers. “Each division leaves its own footprint,” she said. “Sometimes you need those small entities within a culture because the issues are different, the people are different. It’s so fulfilling to be a part of these outreach activities and see the outcome.” Shirley Holland-Hunt leads a discussion at a STEM outreach event for Brownsville Independent School District. Holland-Hunt emphasizes the importance of persistence and continuous learning in your career. “Every little thing that you do or contribute to is huge. You might not see the results right away, but there is an outcome.” She motivates students interested in pursuing space exploration careers to recognize their skills, know their worth, and work hard. “Strive to do your best daily but know that things are going to happen. Just be the best you can be.” One of her core beliefs is to treat others with respect and acknowledge that diversity of thought is a strength. “Different means that somebody has a different way of thinking than you do, and that is a plus.” Shirley Holland-Hunt at a NASA Pathways internship outreach event at Prairie View A&M University. Holland-Hunt is also involved in a discovery program at her *******, educating young ****** about careers in STEM and supporting ********* students pursuing graduate programs in those fields. She recalls teachers doubting her potential to become an engineer. “I don’t want another little girl to hear that she can’t be something that she wants to be,” she said. Her advice to women is to embrace new challenges without *****. “Learn and grow in everything you do. Don’t be afraid to move around in your career. You don’t need to have 100% of the skills to do it,” said Holland-Hunt. “Networking is also important—get to know people who can make a positive impact on your life.” Shirley Holland-Hunt at a Texas Independent School District STEM outreach event in Galveston. Reflecting on her career, Holland-Hunt shares, “I started at NASA in a technical field but learned later that I have a passion for people, which was shocking because I always thought I was shy and an introvert. Now, I have a passion for seeing people grow and giving back in any way I can.” Holland-Hunt worked in flight software and avionics for the Space Shuttle Program, which she said was her favorite program to work on at NASA. “When the program ended, I had to figure out how to use my background at Johnson for future capabilities,” she said. “That is the great part of working at NASA; there are many opportunities that bring together a range of people and perspectives to foster innovation.” Holland-Hunt’s previous role managing a materials and processing group helped overcome her initial ***** that her technical knowledge would hinder her ability to manage people. “I empowered everyone in that group with the respect I had for their work. They could teach me, and we trusted and learned from each other,” she said. “I know that I’m working with the best engineers in the world, and I learn so much from everyone that I work with.” She believes that challenging herself and moving to different programs has revealed her hidden strengths and talents. “Knowing yourself is very important to be successful.” Shirley Holland-Hunt in front of NASA’s Space Exploration Vehicle at Johnson Space Center in Houston. Holland-Hunt is also a member of the Ensemble Theatre in Houston, Texas, which aims to preserve ******** ********* artistic expression. She and her husband enjoy attending car shows and driving her 1972 Pontiac GTO. Coming from a large family of eight, with a father who was a sharecropper, Holland-Hunt helped her family pick cotton. Despite her parents not graduating from junior high school, she and her eight siblings graduated from college, with five becoming engineers. Her husband also works for Axiom Space, one of the agency’s commercial space partners. Holland-Hunt believes that experiencing adversity at a young age developed her character. “My parents always told me to be the best we can be and to love ourselves. That made us feel special and empowered me to do great things,” she said. “We never got new books, but we never saw it as a reason not to learn or excel. It teaches you to work with what you have. Now, when challenges come, I think, ‘That’s nothing. I’ve lived through worse.’” View the full article
  2. 4 min read Solid State Quantum Magnetometers—Seeking out water worlds from the quantum world Left: Jupiter’s moon Europa and its presumed interior. A thick ice shell covers a planetary saltwater ocean, presumed to hold twice as much water as Earth’s oceans. Right: Simulation of the ocean bending the magnetic field lines emitted by Jupiter that are close to Europa Image credit: C. Cochrane/ NASA/JPL-Caltech “Follow the water!” The solar system is full of water in different states, from the Sun’s water vapor to the ice of Pluto and beyond. Water is not only linked to the possibility to sustain life, it is also interesting for its own geological properties and potential uses. For example, ice on the Moon and Mars could support human exploration. Comets that hit Earth may have deposited water on our planet. The icy comets and rings of Saturn reveal how solar systems change over time. Liquid water, however, has a special role in enabling life. Scientists have discovered indications that liquid water might exist on a number of moons orbiting our solar system’s gas and ice giants. The mantra of the astrobiology community is to “Follow the Water” to find life, so subsurface oceans on Jupiter’s Europa, Saturn’s Enceladus, and other moons are compelling targets for future missions. However, looking beneath the miles-thick ice crusts of these planetary bodies with conventional remote-sensing instruments, like cameras and radar, is challenging. Until we can send landers or rovers that drill or melt through the ice, we can use other techniques to track down these enormous, but elusive, water bodies. One method—Magnetometry—stands out since magnetic fields penetrate solid material and can therefore provide information about the interior of planet-sized bodies. Briny water conducts electricity; therefore, a saltwater ocean can function as a planet-sized electric circuit. The strong rotating magnetic field of the parent planet of an ocean world can induce an electric current in this “circuit,” which in turn disturbs and modifies the magnetic field near the ocean world under investigation. These magnetic field disturbances can be observed from a spacecraft and may indicate the presence of liquid water. For example, a distortion of Jupiter’s magnetic field in the vicinity of Europa was measured by the magnetometer on NASA’s Galileo mission, providing further evidence for the initial suspicions of a water ocean under that moon’s icy crust. The heart of optically pumped quantum magnetometers: a diamond crystal enriched with ****** centers. Unlike many other quantum systems, diamond and SiC solid state quantum ****** centers operate at room temperature and can be readily accessed electrically or optically. The bottom photo, filtering the laser light for the observer, shows the red-shifted emission response of the quantum system. This response is encoded with quantum spin information, and can be used to read environmental influences, such as temperature, pressure, electric and, most importantly for us, magnetic field properties. Image credit A. Gottscholl/ NASA/JPL-Caltech Solid-state quantum magnetometers are an upcoming instrument class promising to measure magnetic fields at competitive sensitivities, while offering lower size, weight, and power footprints. In addition, these instruments offer quantum benefits like self-calibration on spin-nuclear quantum interaction, which means that the magnetometer can compensate for drifts over time. This capability is especially important for decades-long missions to the outer ice-giants. Other solid-state quantum advantages include radiation resilience and an inherent ability to withstand very high/low temperatures. Solid-state quantum magnetometers leverage quantum ****** centers located in semiconductors such as diamond and silicon carbide. ****** centers are defects in the crystal lattice—for example, a missing atom or a different atom replacing a crystal atom. In everyday life, ****** centers give crystals their ******, but they can also be probed on the quantum level using modulated light. Due to their quantum spin properties these ****** centers are sensitive to environmental magnetic fields. As these ****** centers are exposed to varying magnetic fields, the changing quantum spin properties can be read electrically and/or optically, providing insight into the magnetic field properties and enabling us to detect the presence of water. Research teams at NASA’s Jet Propulsion Laboratory are developing two magnetometers to measure spin properties from space. The incredibly simple but elegant SiCMAG (Silicon Carbide Magnetometer, Lead Dr. Corey J. Cochrane) instrument reads spin properties electrically, while the OPuS-MAGNM (optically pumped solid state quantum magnetometer, Lead Dr. Hannes Kraus) promises access to higher sensitivities through the addition of optics. Optically pumped here means that the quantum system is pumped with green (diamond) or deep red (silicon carbide) laser light, and the system’s response is read with a light detector. According to Dr. Kraus, “Novel quantum sensors not only enable new science, but also offer the chance to downscale former flagship-class instrumentation to a size and cost allowing flagship-class science on CubeSat-class platforms.” NASA has been funding solid state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia support this research, including NASA’s Glenn Research Center in Cleveland, the University of Iowa, Q-Cat LLC and QuantCAD LLC, as well as international partners such as Japan’s National Institutes for Quantum Science and Technology (QST Japan) and ETH Zurich, a public research university in Zurich, Switzerland. PI Dr. Kraus (left) and postdoctoral researcher Dr. Andreas Gottscholl (right) in the JPL Quantum Magnetometer lab, with the optically detected magnetic resonance (ODMR) spectrometer apparatus—a larger-scale stepping stone towards a miniaturized integrated magnetometer instrument—built by Dr. Gottscholl in the background. The optically pumped quantum sensor crystals (not visible here, as the sensor itself is only millimeters in size) are located in the concentric barrel-shaped four-layer µ-metal chamber, which is capable of shielding the Earth’s and other magnetic field disturbances by a factor of 100,000. Image Credit H. Kraus/ NASA/JPL-Caltech Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PROJECT LEAD Dr. Hannes Kraus, Dr. Corey Cochrane, Jet Propulsion Laboratory/California Institute of Technology SPONSORING ORGANIZATION Science Mission Directorate PICASSO, JPL R&D funding Share Details Last Updated Jun 04, 2024 Related Terms Planetary Science Science-enabling Technology Technology Highlights The Solar System Explore More 2 min read June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III In the final Circumpolar Constellations installment, learn about objects in Cepheus, Draco, and Ursa Major,… Article 4 days ago 6 min read What’s Up: June 2024 Skywatching Tips from NASA Article 5 days ago 8 min read The Moon and Amaey Shah Article 5 days ago View the full article
  3. This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore.Credit: Courtesy Patrick J. Hendrickson; used with permission The NASA Wallops Visitor Center will be open for extended hours from 4-6 p.m., Wednesday, June 12, to conduct outreach focused around NASA’s environmental work at Wallops. In addition, the Visitor Center exhibit gallery and auditorium will be open for the public to visit, and personnel will be onsite to share information on current and upcoming missions. The Visitor Center is open to the public and admission is always free. Wallops’ Environmental Team will be on-hand to discuss and answer questions about NASA’s ongoing work related to Per- and Polyfluoroalkyl Substances (PFAS) at the facility. Experts will also be available to share information on the new Wallops Island Causeway Bridge project. Wallops conducts extended hours outreach events routinely at the Visitor Center, which is located on Virginia Route 175 about five miles from U.S. Route 13 and five miles from Chincoteague Island, Virginia. By Jeremy Eggers NASA’s Wallops Flight Facility, Wallops Island, Va. Share Details Last Updated Jun 03, 2024 EditorMadison OlsonContactJeremy EggersLocationWallops Flight Facility Related TermsWallops Flight Facility View the full article
  4. A ******* Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft is pictured from Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida. NASA astronauts Butch Wilmore and Suni Williams will launch aboard Starliner for the agency’s Boeing Crew Flight Test.Credits: NASA/Joel Kowsky NASA will provide live coverage of launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station. Launch of the ULA (******* Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 10:52 a.m. EDT Wednesday, June 5, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the forward-facing port of the station’s Harmony module at approximately 12:15 p.m., Thursday, June 6. Wilmore and Williams will remain at the space station for about a week to test the Starliner spacecraft and its subsystems before NASA works to complete final certification of the transportation system for rotational missions to the orbiting laboratory as part of the agency’s Commercial Crew Program. The deadline for media accreditation for in-person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc*****@*****.tld. NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): Wednesday, June 5 6:45 a.m. – Launch coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. 10:52 a.m. – Launch Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide continuous coverage leading up to docking and through hatch opening and welcome remarks. 12:30 p.m. – Postlaunch news conference with the following participants: NASA Administrator Bill Nelson Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Joel Montalbano, deputy associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Tory Bruno, president and CEO, ULA Coverage of the postlaunch news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc*****@*****.tld. NASA+ will resume coverage and NASA Television’s public channel will break from in-orbit coverage to carry the postlaunch news conference. Mission operational coverage will continue on NASA Television’s media channel and the agency’s website. Once the postlaunch news conference is complete, NASA+ coverage will end, and mission coverage will continue on both NASA channels. Thursday, June 6 9:30 a.m. – Arrival coverage resumes on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website. 12:15 p.m. – Targeted docking to the forward-facing port of the station’s Harmony module 2 p.m. – Hatch opening 2:20 p.m. – Welcome remarks 3:30 p.m. – Post-docking news conference at NASA’s Johnson Space Center with the following participants: NASA Associate Administrator Jim Free Steve Stich, manager, NASA’s Commercial Crew Program Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information. Audio Only Coverage Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television launch commentary, will be carried on 321-867-7135. Launch audio also will be available on Launch Information Service and ******** Television System’s VHF radio frequency 146.940 MHz and KSC ******** Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast. Live Video Coverage Prior to Launch NASA is providing a live video feed of Space Launch Complex-41 on NASA Kennedy’s YouTube: [Hidden Content]. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. NASA Website Launch Coverage Launch day coverage of the mission will be available on the agency’s website. Coverage will include live streaming and blog updates beginning no earlier than 6:45 a.m., June 5, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or the Crew Flight Test blog. Attend Launch Virtually Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. Watch, Engage on Social Media Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Starliner and #NASASocial. You can also stay connected by following and tagging these accounts: X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @BoeingSpace, @Commercial_Crew Facebook: NASA, NASAKennedy, ISS, ISS National Lab Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab Coverage en Espanol Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese **** Antonia Jaramillo: 321-501-8425; *****@*****.tld o Messod Bendayan: 256-930-1371; *****@*****.tld. NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the ******* States through a partnership with ********* private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station ******** the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars. For NASA’s launch blog and more information about the mission, visit: [Hidden Content] -end- Josh Finch / Jimi Russell / Claire O’Shea Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld / claire.a.o’*****@*****.tld Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p*****@*****.tld / *****@*****.tld / *****@*****.tld Leah Cheshier Johnson Space Center, Houston 281-483-5111 *****@*****.tld Share Details Last Updated Jun 03, 2024 LocationNASA Headquarters Related TermsHumans in SpaceCommercial SpaceInternational Space Station (ISS)ISS ResearchMissionsSpace Operations Mission Directorate View the full article
  5. An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009. Credit: NASA NASA will hold a media teleconference at 4 p.m. EDT, Tuesday, June 4, to provide an update on operations for NASA’s Hubble Space Telescope. NASA anticipates Hubble will continue making discoveries, working with other observatories such as the agency’s James Webb Space Telescope, throughout this decade and into the next. Audio of the teleconference will stream live on the agency’s website at: [Hidden Content] Participants in the teleconference include: Mark Clampin, director, Astrophysics Division, Science Mission Directorate at NASA Headquarters in Washington Patrick Crouse, project manager, Hubble Space Telescope, NASA’s Goddard Space Flight Center in Greenbelt, Maryland To ask questions during the teleconference, media must RSVP no later than two hours before the event to Alise Fisher at: *****@*****.tld. NASA’s media accreditation policy is available online. Launched in 1990, Hubble has been observing the universe for more than three decades and recently celebrated its 34th anniversary. To learn more about Hubble, including some of its greatest scientific discoveries, visit: [Hidden Content] -end- Alise Fisher Headquarters, Washington 202-358-2546 *****@*****.tld View the full article
  6. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Team “Rumble Ready” from California State Polytechnic University, Pomona, comprised of (from left to right) Professor Mark Gonda, Nicole Xie, Junaid Bodla, Jordan Ragsac, Krishi Gajjar, Gerald McAllister III, and Leara Dominguez, took home first place at the 2024 Gateways to Blue Skies Forum held May 30-31 at NASA Ames Research Center.NASA The California State Polytechnic University, Pomona, team, with their project titled “Aero-Quake Emergency Response Network,” took first place at the third annual Gateways to Blue Skies Competition. Competing among eight finalist teams that presented their ideas for aviation-related systems for natural disasters, the California State Polytechnic University, Pomona team earned the top award at the 2024 Blue Skies Forum, hosted at NASA’s Ames Research Center May 30-31. The Forum was judged by subject matter experts from NASA and industry. In addition to the first-place recognition, team members were awarded an opportunity to intern at any of the four NASA Aeronautics Centers — Langley Research Center (Hampton, VA), Glenn Research Center (Cleveland, OH), Ames Research Center (Mountain View, CA), and Armstrong Flight Research Center (Edwards, CA) —across the country during the 2024-25 Academic Year.  “We truly enjoyed the NASA Blue Skies competition,” said team lead Krishi Gajjar. “We are honored that our efforts have been awarded by the experienced and diverse judging panel. This would not have been possible without the guidance from our advisor, professor Mark Gonda, and our rigorous engineering program at Cal Poly Pomona. We are proud to have grown together as a team and are excited to continue advancing aviation in our future careers as aerospace engineers!” Second place went to Columbia University with their project, “AVATARS: Aerial Vehicles for Avalanche Terrain Assessment and Reporting Systems.” Other awards included: Future Game-Changer Award: Cerritos College | F.I.R.E (***** Intervention Retardant Expeller) Most Innovative Award: North Carolina State University | Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (REACHR) Sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project, the Gateways to Blue Skies Competition is an initiative to engage college students in researching climate-friendly technologies and applications related to the future of aviation. Because of the increase in natural disasters compounded by climate change, the 2024 theme, “Advancing Aviation for Natural Disaster,” asked students to investigate and conceptualize, in terms of feasibility and viability, aviation-related systems that can be applied by 2035 to one phase of management of a chosen type of natural disaster to improve capabilities. Because many emergency response professionals believe there is no one proposed concept that will be applicable for all different natural disasters or can be applied to all phases of management, this competition welcomed a wide range of potential solutions. New technologies and applications gained from this crowdsourced competition may be developed further by NASA for use in coordinating and facilitating disaster management. At the Forum, finalist teams presented concepts of systems that addressed responses to natural disasters such as earthquakes, avalanches, volcanic eruptions, hurricanes, floods, and wildfires. “Whenever NASA engages with students, it’s such a rewarding experience,” said Steven Holz, NASA Aeronautics University Innovation Assistant Project Manager and Blue Skies judge and co-chair. “This competition encourages students to imagine, expand, and tackle the challenges and opportunities that await in the future of aeronautics. The students bring unique concepts and ideas to the table along with a wealth of knowledge and professionalism. It’s always exciting to have the chance to see firsthand what they come up with next.” Students also had the opportunity to network with NASA and industry experts, tour NASA’s Ames Research Center, and gain insight into potential careers and applications that will further the Agency’s mission toward a climate-friendly aviation future. “Because natural disasters are so far-reaching and impactful to so many, we had a lot of interest in this year’s competition,” added Marcus Johnson, project manager in the Aeronautics Directorate at NASA Ames Research Center and 2024 Blue Skies co-chair. “Each of the eight finalist teams that presented at this year’s Forum were passionate about their concepts and each offered compelling ideas. This competition is about so much more than just “awards,” it’s about connecting, networking and identifying the future leaders in aeronautics.” The 2024 Gateways to Blue Skies Competition is sponsored by NASA’s Aeronautics Research Mission Directorate and administered by the National Institute of Aerospace. **** View the livestream of the competition presentations: [Hidden Content] View the competition finalists: [Hidden Content] To learn more about the 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition, visit: [Hidden Content] For more information about NASA Aeronautics, visit: [Hidden Content] Share Details Last Updated Jun 03, 2024 Related TermsAeronauticsLangley Research Center Explore More 4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes Article 3 days ago 4 min read NASA Releases New High-Quality, Near Real-Time Air Quality Data Article 4 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more. Article 5 days ago View the full article
  7. Comicpalooza, the largest annual pop culture festival in the southern ******* States, is home to thousands of comic book, science, anime, and gaming fanatics in Houston. Guests have the opportunity to celebrate their passions through a variety of entertainment, panels, and meet and greets. NASA’s Johnson Space Center has participated in Comicpalooza’s festivities for the last decade, giving attendees the chance to interact with NASA experts and learn more about human space exploration and the agency’s mission. Comicpalooza guests listen to a presentation by NASA astronaut Marcos Berríos at the agency’s exclusive booth and stage area.NASA/Robert Markowitz Over 52,000 fans attended this year’s Comicpalooza, held May 24-26 at Houston’s George R. Brown Convention Center. NASA shared with them the exhilarating future of the Artemis campaign that will take humans further in space exploration than ever before, plans for human exploration of the Moon and Mars, and showcased innovative spacesuits, lunar terrain vehicles, and spacewalk tools. Fans also had an opportunity to meet and take photos with NASA astronaut Marcos Berríos. NASA astronaut Marcos Berríos talks about his journey to becoming an astronaut and experiences to date during a presentation at 2024 Comicpalooza. NASA/Robert Markowitz The NASA exhibit featured immersive experiences with the Extravehicular Activity and Human Surface Mobility Program; Exploration Architecture, Integration, and Science Directorate; Human Health and Performance Directorate; and STEM engagement programs. These unique exhibits provided guests with insight into the exciting opportunities and discoveries ahead for human spaceflight. NASA’s presence at Comicpalooza also caught the attention of legendary Hollywood actor Christopher Lloyd, who met NASA officials and participated in a tour of Johnson Space Center after the event concluded. Johnson Space Center volunteers and NASA experts who led interactive exhibits and panel discussions as part of the agency’s presence at 2024 Comicpalooza.NASA/Robert Markowitz NASA’s exclusive Comicpalooza stage featured 13 unique panels and discussions from agency experts, programs, and Berríos. These panels included: The Development of Lunar Base Camp: NASA scientists discussed how future robotic and human explorers will put in place infrastructure for a long-term sustainable presence on the Moon. Driving on the Moon One Day: A discussion about the latest technology and partnerships that will develop the next mobility systems on the Moon. Another One Bites the Dust: Lunar Dust, Hardware Damage, and Why It Matters on the Moon: Lunar dust mitigation engineers and scientists talked about some of the risks of working on the Moon, what happened during Apollo, and what they plan to do about hardware damage, which threatens their efforts to keep astronauts safe and ensure mission success. Meet an Astronaut: NASA astronaut Marcos Berríos hosted a panel about his journey to becoming an astronaut, what he is doing at NASA during his training *******, and what is next for him in the future. A Q&A session followed the presentation and guests had the opportunity to learn more about Marcos. Why It’s Hard to get to Mars: A discussion on why it is so difficult to get to the “Red Planet” and what technologies and strategies NASA is developing to accomplish this goal. Landing on the Moon: A panel onwhy landing on the Moon ******** a challenge and what the future looks like for additional lunar landings and activities. International Space Station Mimic: Engineers and educators talked about a 3D printed, robotic model that syncs to live telemetry streaming from the real International Space Station in real-time. My NASA Story: An early career perspective on launching a career at Johnson Space Center. Panelists discussed how they got to where they are, and what their jobs look like on a daily basis. Artemis Overview: An overview on the Artemis campaign and its future, which includes landing the first woman and first person of ****** on the Moon. Through the Artemis missions, NASA will use new technology to study the Moon in new and better ways and prepare for human missions to Mars. Draw Artemis: A panel of experts hosted a “draw along” as they discussed humanity’s voyage back to the Moon, the key role art plays in exploration, and the otherworldly environment of the Moon’s South Pole. NASA’s participation in Comicpalooza educates and excites the public about the agency’s mission and inspires people who want to be a part of space exploration in their own unique ways. Enjoy more images of the NASA exhibit booth at Comicpalooza below. Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Actor Christopher Lloyd visited the Mission Control Center at NASA’s Johnson Space Center following Comicpalooza.NASA Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz View the full article
  8. A team from Iowa accepts the Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Derrol NailPhoto credit: NASA/Derrol Nail Members of the Artemis Generation kicked up some simulated lunar dust as part of NASA’s 2024 Lunabotics Challenge, held at The Astronauts Memorial Foundation’s Center for Space Education at the agency’s Kennedy Space Center Visitor Complex in Florida. When the dust settled, two teams emerged from Artemis Arena as the grand prize winners of this year’s competition. Teams from Iowa State University and the University of Alabama shared the Artemis grand prize award for scoring the most cumulative points during the annual competition. Judges scored competing teams on project management plans, presentations and demonstrations, systems engineering papers, robotic berm building, and science, technology, engineering, and math (STEM) engagement. This is the first time in Lunabotics’ 15-year history that the competition ended in a tie for the top prize, and most likely the last time. “Both teams earned their win, but a tie was never on the table,” said Rich Johanboeke, project manager at NASA’s Kennedy Space Center in Florida. “These students work hard and sacrifice much throughout the year to be a part of this challenge and to come to Kennedy, so our team will look into creating a tie-breaking event for future events.” Alabama’s team lead, Ben Gulledge, is pictured with the team’s winning rover during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail While previous Lunabotics competitions focused on lunar mining, this year’s competition reflected the current needs of NASA’s Artemis missions. Teams designed, built, and operated autonomous robotic rovers capable of building a berm structure from lunar regolith. Among other uses, berms on the Moon could provide protection against blast and material ejected during lunar landings and launches, shade cryogenic propellant tank farms, or shield a nuclear power plant from space radiation. Of the 58 college teams across the country that applied to the challenge, 42 were invited to demonstrate their robotic rovers during the qualifying round held in the Exolith Lab at the University of Central Florida in Orlando. From there, 10 finalist teams made the short trip to Kennedy for the two-day final round, where their robots attempted to construct berms from simulated lunar regolith inside Artemis Arena. “During the competition we had over 150 berm construction runs in the arena,” said Robert Mueller, senior technologist for Advanced Products Development in NASA’s Exploration Research and Technology Programs Directorate, as well as lead judge and co-founder of the original Lunabotics robotic mining challenge. “So, teams went into the arena 150 times and created berms – that’s pretty impressive. And 28 teams, which is 65% of the teams that attended, achieved berm construction points, which is the highest we have ever had. That speaks to the quality of this competition.” Teams competing in this year’s Lunabotics applied the NASA Systems Engineering Process to create their prototype robots and spent upwards of nine months focused on making their designs realities. “We really put a lot of work in this year,” said Vivian Molina Sunda, team and electrical lead for University of Illinois at Chicago. “Our team of 10 put in about 3,400 hours, so it’s really exciting to get to Kennedy Space Center and know we made the top 10.” The University of Illinois team received two awards for its efforts – the Mission Control “******** is Not an Option” Award for Team Persistence and the Innovation Technology Award for best design based on creative construction, innovative technology, and overall architecture. Lunabotics teams prepare robots to compete inside the Artemis Arena during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail For the hundreds of Artemis Generation members who took part in this year’s competition, Lunabotics was an opportunity to connect to NASA’s mission, work, and people, while also using classroom skills and theories in ways that will benefit them in future STEM careers. “We go into engineering because we want to do stuff, we want to make things,” said Ben Gulledge, team and mechanical lead for the University of Alabama’s Artemis grand prize co-winning team. “This competition gives you the opportunity to take all your classroom theory and put it into practice and learn where your gaps in knowledge are. So, you learn to be a better designer and learn where you can improve in the future.” Coordinated by NASA’s Office of STEM Engagement, the Lunabotics competition is one of NASA’s Artemis Student Challenges, designed to engage and retain students in STEM fields. These challenges are designed to provide students with opportunities to research and design in the areas of science, technology, engineering, and math, while fostering innovative ideas and solutions to challenges likely to be faced during the agency’s Artemis missions. To view the complete list of NASA’s 2024 Lunabotics Challenge winners, or for more information visit: [Hidden Content] Winners List Artemis Grand Prize Iowa State University, The University of Alabama Robotic Construction Award First Place – Iowa State University Second Place – The University of Alabama Third Place – University of Utah Systems Engineering Paper Award First Place – College of DuPage Second Place – The University of Alabama Third Place – Purdue University-Main Campus Leaps and Bounds Award New York University Nova Award for Stellar Systems Engineering by a First Year Team Ohio State University STEM Engagement Award First Place – University of North Florida Second Place – Auburn University Third Place – Iowa State University Honorable Mention – Harrisburg University of Science and Technology Presentation and Demonstration First Place – University of North Carolina at Charlotte Second Place – Purdue University-Main Campus Third Place – University of Utah First Steps Award – Best Presentation by a First Year Team Harrisburg University of Science and Technology Innovation Technology Award University of Illinois at Chicago The Mission Control “******** is Not an Option” Award for Team Persistence University of Illinois at Chicago View the full article
  9. Earth ObserverEarth and ClimateEarth Observer HomeEditor’s CornerFeature ArticlesNewsIn MemoriamsScience in the NewsMoreMeeting SummariesArchives 26 min read Summary of the 2023 Precipitation Measurement Mission Science Team Meeting Andrea Portier, NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc., *****@*****.tld Introduction The annual Precipitation Measurement Mission (PMM) Science Team Meeting (STM) took place September 18–22, 2023, in Minneapolis, MN. The PMM program supports scientific research and applications, algorithm development, and ground-based validation activities for the completed Tropical Rainfall Measuring Mission (TRMM) and current Global Precipitation Measurement (GPM) mission, including the GPM Core Observatory. Participants (including 137 in person and 22 virtual attendees) joined the meeting from a variety of affiliations including NASA, the Japan Aerospace Exploration Agency (JAXA), universities, and other partner agencies—see Photo. The meeting included 46 plenary presentations spread across 7 thematically focused sessions and 77 poster presentations split between 2 sessions, with both ***** and poster sessions covering mission and program status, partner reports, GPM algorithm development, and scientific results using GPM data. The meeting also included a series of splinter sessions for precipitation working groups. The working groups included NASA–JAXA ****** Precipitation Science Team, the Committee on Earth Observation Satellites–Precipitation Virtual Constellation, GPM Mentorship Program, and topically focused groups on Applications, Hydrology, Land Surface, Latent Heating, Multisatellite, GPM Intersatellite Calibration (XCAL), Ground Validation (GV), Particle Size Distribution (PSD), and Oceanic Areas. These working groups were a combination of invitation-only, in-person, and hybrid meetings. Owing to the distributed nature of these meetings, summaries of their proceedings are not included in this article. This article highlights current updates on the GPM mission and summarizes scientific results conveyed during the 2023 PMM STM. The meeting agenda and full presentations can be accessed through the 2023 PMM Science Team Meeting Files. Note that this is a password protected page; readers interested in accessing these files will need to reach out via the GPM Contact Form on the website to receive the access code. Photo. Attendees of the 2023 PMM STM in front of the McNamara Alumni Center in Minneapolis, MN. Photo credit: Chris Kidd/GSFC and University of Maryland, College Park (UMD) Status Report and Updates on PMM: Perspectives from NASA and JAXA The PMM missions are the fruit of long partnerships between NASA and JAXA. The PMM Science Team (ST) includes more than 20 international partners. The subsections that follow highlight the status of the PMM program and related activities that were conveyed by NASA and JAXA PMM Science Program Management Teams. NASA Will McCarty [NASA Headquarters (HQ)—GPM Program Scientist] presented the NASA HQ perspective regarding PMMs – present and future. He explained that current missions continue to drive the focus for precipitation science, and that future missions will continue to link the thermodynamic and dynamic factors of precipitation science by targeting additional temporal information. McCarty introduced several current and upcoming missions and programs, including satellite launches [e.g., NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), an Earth Venture Instrument (EVI), and the Investigation of Convective Updrafts (INCUS), an Earth Venture Mission], instruments [e.g., NASA’s Polarized Submillimeter Ice-cloud Imager (POLSIR), also an EVI, which will be deployed on two CubeSats], and field campaigns [e.g., NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) and Convective Processes Experiment ***** Verde (CPEX-CV) experiments]. He then briefly discussed the second (2017) Earth Science Decadal Survey and provided an overview of the future Earth System Observatory (ESO), which will have interconnected core missions (e.g., the Atmosphere Observing System (AOS)). He also discussed the Planetary Boundary Layer (PBL), which the Decadal Survey classifies incubation targeted observable. McCarty concluded by noting that the future PMM ST call may be integrated by combining mission science from multiple satellites. George Huffman [NASA’s Goddard Space Flight Center (GSFC)—GPM Project Scientist and PMM ST Lead] provided an update on the projected lifetime for GPM. Based on fuel usage alone, GPM should continue to December 2027. However, the amount of solar activity has an impact on that calculation. The Sun is expected to be quite active over the next few years as we approach the Solar Maximum for Solar Cycle 25—which could shorten GPM’s lifetime by as much as four years. He noted that a controlled reentry of the GPM Core spacecraft is planned—and enough fuel has to be kept in reserve to allow this to happen. Huffman discussed a recently developed plan for boosting the orbit of the GPM core satellite—for more details on the plan, see the subsection, “GPM Core Observatory Boost,” later in this article. He added that NASA and JAXA have both approved the plan and deemed its implementation critical for overlap with AOS for instrument intercomparison. The boosting is currently scheduled for November 7–9, 2023.(Update: Since the meeting in September, the GPM orbit boost was ********* successfully on the scheduled dates.) The impact of the boosting on radiometer algorithms (e.g., for the GPM Microwave Imager (GMI)) is expected to be less than the impact on the radar algorithms (e.g., for the GPM Dual-Frequency Precipitation Radar, (DPR)). The potential impact on the combined algorithms (i.e., algorithms used to combine data from GMI and DPR) is still being assessed. Huffman also discussed the status of the GPM data products. He reported that all GPM core data products are using Version 7 (V07). He mentioned that V07 of the Integrated Multi-Satellite Retrievals for GPM (IMERG) Final is out, but IMERG Early and Late data products are pending other actions in the NASA Precipitation Processing System (PPS). (IMERG has 3 classifications of data products: Early (latency of 4 hours), late (latency of 12–14 hours), and final (latency of 3 months).) He noted that the GPM orbit boost requires modifications to V07 core algorithms, and this accentuates the importance of a timely release of V08 algorithms (anticipated early 2026). Erich Stocker [GSFC—GPM Deputy Project Scientist for Data and Precipitation Processing System Project Manager] discussed the status of GPM data products. He mentioned that radar/combined/IMERG products have transitioned from V06 to V07—but all radiometer products, Level-1 to Level-3, went from V05 to V07 to ensure the version is consistent on all of the products. Stocker continued that the GPM core satellite boost in November 2023 will lead to an outage of radar products for about five months for research and 2–3 months for near real-time (NRT) data products. NRT radiometer products will continue through the boost with only 2–3 days of outage while the satellite reaches its new altitude. He concluded that the initial NRT V07 IMERG processing and V07 retroprocessing of Early and Late IMERG products will start in January 2024. David Wolff [NASA’s Wallops Flight Facility (WFF)—GPM Deputy Project Scientist for Ground Validation and Ground Validation System Manager] provided an overview of the GPM Ground Validation program and current activities. He stated that the ground validation (GV) program has state-of-the-art ground and remote sensing instruments to acquire precipitation and microphysics data to validate GPM retrievals. He described the ground validation site at NASA’s Wallops Flight Facility (WFF), which includes several radars, disdrometers (an instrument that measures drop-size distribution), and a Precipitation Imaging Processor (PIP) package. Wolff discussed the gauge-only systems, Platforms for In situ Estimation of Rainfall Systems (PIERS), activities for Increasing Participation of ********* Serving Institutions in Earth Science Division Surface-Based Measurement Networks, and pySIMBA – the GPM GV Support Software, an Open-Source Python Package to integrate and Analyze Precipitation Datasets that is available from GitHub. Wolff also provided a brief overview of the successful GPM GV Workshop that was held at Wallops Flight Facility on March 23–25, 2023. He continued by providing GPM Ground Validation Network (VN) updates and discussing VN captures of three-dimensional (3D) polarimetric information within DPR and GMI. Wolff also noted that the GV program includes field campaigns (e.g., IMPACTS and Marquette, a five-year mini campaign conducted in collaboration with the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS)­). He also discussed the new S-band radar network in Canada that offers access to high-quality radar data at relatively high latitudes over both land and sea. This data will be used as part of the VN for evaluation of GPM products. He concluded by discussing the Global Hydrometeorology Resource Center (GHRC) that archives past and current field campaign data and provides data quality control, metadata, campaign descriptions, and digital object identifier (DOI) assignments for each instrument/sensor. Andrea Portier [GSFC—GPM Mission Applications Lead] and Dorian Janney [GSFC—GPM Outreach Coordinator] reflected on the 2022–2023 applications and outreach efforts and also discussed upcoming activities, including the – at the time of the meeting – upcoming tenth anniversary of the GPM Mission in February 2024. The applications team continues its focus on increasing awareness and use of GPM data and products across communities through user-engagement activities, including workshops (e.g., Applying Earth Observation Data for Research and Applications in Sustainable Development held at the 2022 Fall Meeting of the ********* Geophysical Union (AGU) in San Francisco, CA), trainings (e.g., 2023 GPM Mentorship Program), GPM application case studies, and GPM visualizations. A continuing and integral part of GPM outreach efforts is the numerous activities that reach hundreds of students and adults in a variety of formal and informal settings. This includes cooperative efforts with NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) and hands-on activities at events (e.g., the Earth Day celebration at the Washington, DC’s Union Station). (To read more about the 2023 Earth Day celebration at Union Station, see A Pale Blue Dot in Washington: NASA’s Earth Day Celebration at Union Station, in the July–August 2023 issue of The Earth Observer [Volume 35, Issue 4, pp. 4–12].) Many of these efforts will be highlighted and amplified during GPM’s tenth anniversary celebration. The GPM Applications and Outreach Team’s planning for the anniversary is underway. The intent is to highlight the vast capabilities of the GPM Mission and how GPM data can be used to address societal applications and improve the understanding of Earth’s water and energy cycles through a series of activities and resources starting in February 2024. These efforts include a reception at GSFC Visitor’s Center, a year-long monthly webinar series, feature articles, applications eBook, and a GPM video, among others. Details of these efforts will be posted through the GPM website. JAXA Takuji Kubota [JAXA—JAXA GPM Program Scientist] provided an update and a review of the PMM program status and mission objectives. He emphasized that this update included the perspectives of the ********* PMM Science Program Management Team, including their roles in the development of DPR and its algorithms, GV, GPM data processing, and GPM data distribution systems. He also gave an update on current activities related to GPM data utilization and application across Japan and Asia. Kubota continued by describing the potential impacts on the DPR instrument because of the proposed orbit boost, noting that the instrument footprints and swath widths will increase proportionately with altitude change accompanied by a slight reduction in radar sensitivity. JAXA is preparing for these impacts with revised codes for L1 algorithms and planning for external calibrations before and after the orbit boost to examine calibrations of the DPR. Kubota also discussed the reprocessing of JAXA’s Global Satellite Mapping of Precipitation (GSMaP) data product (essentially the JAXA equivalent of IMERG) to enable a longer-term precipitation dataset, highlighting its completion in September 2023. GSMaP data is now available back to January 1998. Kubota discussed the future of ********* precipitation measurements including: Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), scheduled for launch in 2024; Global Observing SATellite for Greenhouse gases and Water cycle (OSAT-GW), planned for launch NET 2024; Advanced Microwave Scanning Radiometer (AMSR) series, which currently includes AMSR2 on the (GCOM-W) and will include AMSR3 on GOSAT-GW; and the previously discussed ESO AOS mission. He concluded with a discussion of JAXA’s plan for observing and celebrating GPM’s tenth anniversary. Yukari Takayabu [University of Tokyo—JAXA GPM Project Scientist] highlighted results from recent science studies using DPR and GSMaP data products from the JAXA assembled GPM Program Science Team. She noted the use of DPR for extracting high-altitude precipitation information over *******, capturing low-level precipitation statistics near the center of typhoons, narrowing the ****** zone of the DPR to improve shallow precipitation detection in mountainous areas, validation studies of DPR, and retrieving frozen precipitation data using DPR. She concluded her presentation with highlights of GSMaP use for several applications, including the new GSMaP validation work in Japan to observe extreme rainfall, improvements to GSMaP through data-driven approaches, and data assimilation of GSMaP into the JAXA Realtime Weather Watch system. Nobuhiro Takahashi [Nagoya University] presented an overview of significant updates to the DPM algorithm since the last PMM ST meeting, including changes in the latest V07 processing to accommodate the full-swath Ka-band operations – see Figure 1. He emphasized the impacts on the planning and development of V08 DPR algorithm with respect to the GPM orbit boost (described in George Huffman’s presentation). He noted that the major impacts to the performance of DPR include a degradation of measurement sensitivity and the “rain/no rain” classification. Takahashi concluded by saying that the release of V08 is expected in January 2026. Figure 1. Evaluation of DPR product improvements from V06 to V07. Dual frequency product has smaller bias than KuPR product. The correlation coefficient improved from V06 to V07.Figure credit: Nobuhiro Takahashi/Nagoya University Kosuke Yamamoto [Earth Observation Research Center (EORC) and JAXA] summarized application activities initiated by the JAXA GPM Program Science Team. He discussed the use of GSMaP precipitation data to support and enhance several application areas, e.g., the operational use of GSMaP for flood and severe weather forecasting as well as the use of GSMaP in operational systems, including the JAXA Agro-meteorology Information Provision System (JASMIN), ASEAN Food Security Information System (AFSIS), and the *********’ Coast Guard’s Maritime Domain Awareness (MDA) initiative. Yamamoto also discussed the 2022 Japan–Australia–India–U.S. (QUAD) ****** Leaders’ Meeting Tackling Extreme Precipitation Events Workshop, an online event that took place March 1–3, 2023, and associated workshop reports focusing on the utilization of satellite observations across Pacific Islands. GPM Algorithm Updates Presenters during this session provided information and updates on various aspects of the five major algorithms of GPM. Full documentation and detailed updates for each algorithm are available at the Precipitation Data Directory. Dual Frequency Radar Algorithm The DPR algorithm team provided updates on DPR-related work, including the further refinement of the path-integrated attenuation (PIA) estimates used in the surface reference technique (SRT). They examined the effects of using the new AutoSnow algorithm – which uses satellite snowfall observations to create snowfall maps – on PIA estimations and changes in the surface type classification. Overall, the changes were small on the estimated precipitation profiles. Other algorithm refinements include the addition of a dry and wet snow category and wind speed. The team is currently examining how to recover Ka-band attenuation from the Ku-band. They stressed that results from this analysis are preliminary, and more work is needed to assess the utility of this technique. Finally, the team is discussing the implications of the GPM orbit boost on the DPR algorithm. GPM Combined Radar–Radiometer Algorithm The GPM Combined Radar–Radiometer Algorithm (CORRA) team discussed the changes and improvements to the CORRA V07 algorithm over the previous version. They highlighted the new AutoSnow algorithm and its impacts within CORRA V07. The team also examined the impact of the precipitation particle size distribution (PSD) initial assumptions on the estimation of snowfall as well as a machine-learning based initialization approach that improves the agreement between CORRA and NOAA’s Multi-Radar/Multi-Sensor System (MRMS) snow estimates. In addition, the team continues to examine a radiometer-only module to estimate light precipitation over oceans. This module will be included in the next version (V08) of CORRA. The team is also looking at the consequences of the GPM orbit boost. Goddard Profiling Algorithm for GMI The Goddard Profiling Algorithm (GPROF) team continues to work on well-known issues. The V07 update includes improvements in the a priori database to help constrain outputs from GPM constellation radiometers as well as inclusion of the radiometers on TROPICS and NASA’s Temporal Experiment for Storms and Tropical Systems–Demonstration (TEMPEST-D). The two new neural network-based implementations of GPROF in V08 are anticipated in roughly a year. The team reported that they have no issues with the GPM orbit boost. Integrated Multi-Satellite Retrievals for GPM Algorithm The IMERG algorithm team reported on V07, which includes a wide range of algorithm changes from V06. V07 includes retrospective reprocessing of the entire TRMM–GPM record and thus supersedes all previous versions. The team also reported that the algorithm changes improve the performance of IMERG estimates both in terms of its precipitation detection and systematic and random bias. The presenters noted improvements over frozen, orographic, and coastal surfaces. The team is now working on priority items that need completing in order to implement V08. Convective–Stratiform Heating Algorithm The GSFC Convective–Stratiform Heating (CSH) algorithm team provided an overview on latent heating (LH) retrievals. The presentation highlighted some of the details in updating to V07, including more accurate cloud-resolving model (CRM) simulations (using 3D domain rather than two-dimensional) and new detailed radiation retrievals. V07 is also “terrain aware,” meaning that the algorithm includes added details of radiative heating profiles and eddy transport terms. For V08, the CSH team plans to have a new 3D CRM database with a grid size of 250 m (820 ft) and look-up tables (LUTs) for non-surface raining columns for the tropical/summertime part of the algorithm as well as LUTs for terrain. These V08 improvements are still in development as of this meeting. Science Results and Data Quality A large component of the meeting was dedicated to presentations by NASA PMM-funded Principal Investigator (PI) teams on the science research and applications being achieved using PMM data. PI ***** presentations were divided into four thematically focused topical sessions: Precipitation Microphysics, Snow and Hail, Storm Analysis, and Data Uncertainty. The subsections that follow highlight scientific results from each of these sessions. The reader is referred to the full reports online for more details. Precipitation Microphysics Presenters during this session described various techniques and new methodologies to study microphysical properties of precipitation including shape and size of precipitation particles (e.g., drop size distribution (DSD)), phase identification (e.g., liquid, solid, and mixed phase/melting), scattering properties, and precipitation rate, using both radar and radiometer observations. These property measurements play a pivotal role in improving precipitation retrieval algorithms, allowing scientists and decision makers to better understand and forecast storms. One presenter in this session discussed new methods for classifying different types of precipitation (e.g., rain, graupel, hail, and dry and wet snow) using DPR precipitation retrievals. The new technique will be implemented into the V08 DPR algorithm. The discussion also covered a technique to establish relationships between GMI brightness temperature and hydrometeor type (e.g., rain, snow, graupel, and hail), leveraging the GPM validation network to construct LUTs of hydrometeor type likelihood – see Figure 2. Another presenter introduced a model to understand how DSD changes near the surface can be used to estimate rainfall rate. The last presenter in this session discussed the development of a precipitation scattering property database—which includes scattering characteristics of about 10,000 different types of ice particles. The database includes scattering cross sections calculated in thousands of orientations for each type of particle. This database is accessible to the public, which helps support the development of physically based scattering calculations and improvement of precipitation retrieval algorithms for both radar and radiometers. Figure 2. A technique for retrieving hydrometeor information from GMI brightness temperature. In these RGB plots, snow and rain are combined into one category (green), while the individual probabilities are retained in the lookup tables.Figure credit: Dan Cecil/NASA’s Marshall Space Flight Center (MSFC) Snow and Hail In this session, speakers discussed a broad move toward satellite retrievals for frozen hydrometeors, not just to identify bulk effects (e.g. snow or hail accumulation at the surface), but also to gather information on physical properties of frozen hydrometeors (e.g., where hailstones reside within clouds or what shapes snowflakes take). Understanding frozen hydrometeor properties can significantly improve precipitation and latent heat estimates that are essential for numerical weather forecasting and climate model development. One speaker applied a method that used DPR and GMI observations to estimate frozen precipitation particle properties for an Olympic Mountain Experiment (OLYMPEX) field campaign case. The results he showed indicated a significant difference in the shapes of snowflakes between land and sea. Another speaker detailed the use of a simple machine learning framework trained on measurements of the use of snowfall and cloud type observations from the CloudSat Cloud Profiling Radar (CPR) to infer surface snowfall from GMI microwave measurements. Other presenters conveyed the results of a study examining different potential indicators of hail within the GPM database. These hail indicators were mapped, and the mean vertical profiles of radar reflectivity and storm structure were contrasted. The final pair of presentations focused on detecting hail in South America and *******. In South America, hail-producing storms were shown to be strongly linked to local topography – in contrast to hotspots of hail in the U.S. Meanwhile, in *******, new algorithms for identifying hail in GPM data suggest hail should be common – but this outcome is at odds with ground truth observations. This test case is being used to develop new methods for retrieving hail that include analyzing horizontal profile information within the data. Storm Analysis Presenters in this session discussed a variety of applications and assessments of PMM products for analyzing a variety of storms, particularly their cloud, precipitation, and kinematic structures and their structural evolution. The first speaker compared precipitation events simulated in IMERG to the same event with rain gauge observations. They found that while IMERG missed many winter precipitation events in mountainous regions –which rain gauges typically can measure – IMERG also captured summer virga events – which rain gauges typically miss. Another presenter compared IMERG to river catchment and integrated watershed observations and found that IMERG overestimated small precipitation events but underestimated large events. The next presenter showed a comparison IMERG simulations to the multi-instrument MRMS dataset during the lifecycle of precipitation events. The results shown suggest that IMERG errors in precipitation intensity could be improved by inputting other variables (e.g., ice water path or vertical velocity) into the precipitation retrievals. The discussions during this session also covered other plans to use PMM products to study convection in atmospheric river events, in combination with a modeling analysis using different convection schemes. The final pair of presenters spoke about understanding convective-scale drivers of the Inter Tropical Convergence Zone ascent and widening the use of a simple prognostic model that will use PMM data for filling terms in the model. One model weakness is the decay term for the convection cloud shield, which, if determined, could reduce error in climate models, particularly with radiative processes. The final speaker used TRMM Visible and Infrared Scanner (VIRS) data to develop and test a method for identifying and classifying cloud areas (i.e., core, midrange extent, and outer bound split window testing) and determine their relationships to other environmental variables, such as sea surface temperatures and column water vapor. Data Uncertainty Presenters during this session discussed new methodologies to address data uncertainties and bias in precipitation retrievals to improve precipitation estimates for science and applications research. Two of the presenters delved into the details of how the GPROF algorithm has inherent precipitation biases due to different hydrometeor characteristics captured by GMI passive microwave brightness temperature – which may be related to thermodynamic environments. Another PI presented updates for improving uncertainty estimates to enhance hydrological prediction. Specifically, he discussed multiscale precipitation uncertainties in precipitation products, including a new product that combines the Space-Time Rainfall Error and Autocorrelation Model (STREAM) with single-orbit rainfall estimates from the combined GPM data product, called STREAM-Sat. He explained how the uncertainties in these products can influence hydrologic prediction. The session concluded with a discussion of machine learning methods to estimate the probability distribution of uncertainties in passive microwave precipitation retrievals at different temporal and spatial scales. Discussion of Future Missions, Observations, and Activities Relevant to GPM This session featured presentations on several other existing and upcoming missions in various stages of development, as well presentations covering the future of precipitation instruments and observations, each with applications relevant to GPM. Each presentation included information on plans to advance and support precipitation science in the near term and the coming decade, as described below. TROPICS The TROPICS Pathfinder CubeSat mission provides microwave observations of tropical cyclones with less than a 60-minute revisit time to capture better storm dynamics and improve forecasting. The Pathfinder has demonstrated all mission elements and provided new tropical cyclone imagery (12,000+ orbits and counting). The Cal/Val team hopes to release the data to the public in Fall 2023. (UPDATE: Provisional TROPICS data was released in January 2024.) The TROPICS pathfinder satellite showed that the compact TROPICS design performs comparably to the state-of-the-art sounders. Lessons learned will help the TROPICS Team as they work to improve efforts and operate the TROPICS constellation, which now holds a total of five satellites. AOS As discussed in Will McCarty’s remarks, AOS is a key component of the Earth System Observatory that was recommended in the 2017 Decadal Survey. The mission will deliver transformative observations fundamental to understanding coupled aerosol– and cloud–precipitation processes that profoundly impact weather, climate, and air quality. Two AOS projects are in the mission concept and technology development phase (Phase-A): AOS-Storm (to launch late 2020s), with a Ku Doppler radar, microwave radiometers, and backscatter lidar in a 55° inclined orbit; and AOS-Sky (to launch early 2030s) with cloud-profiling Doppler radar, backscatter lidar, microwave radiometer, polarimeter, far infrared (IR) radiometer, and aerosol and moisture limb sounders in polar orbit. (This paragraph reflects what was discussed during the meeting, however, AOS is undergoing changes that will be reflected on the website at a later date.) GPM Microwave Radiometer Constellation in the Next Decade The future passive microwave radiometer constellation looks robust, with multiple sensors to be launched in the next decade. Small/CubeSat constellations are becoming a reality, and a plan to incorporate them quickly into the overall precipitation constellation is needed. A point of emphasis was that a sensor in an inclined orbit is a necessity when it comes to providing a reference measurement to support this effort – see Figure 3. Figure 3. Evaluation of passive microwave (PMW) frequencies and coverage to assess data gaps and needs for the future of precipitation constellation.Figure credit: Rachael Kroodsma/GSFC JAXA Precipitation Measuring Mission (JAXA PMM) Radar Plans call for JAXA’s next generation of precipitation radar to be deployed as part of the agency’s future Precipitating Measuring Mission (PMM – yes, the same acronym as the Precipitation Measurement Mission). Objectives for this next-generation precipitation radar include Doppler observations, higher sensitivity measurements, and scanning capability. JAXA has collaborated with a ********* science team and user community to explore the feasibility of a next-generation, dual-frequency precipitation radar. The discussion focused on the importance of measuring convection through Doppler velocities from spaceborne radar. The EarthCARE mission will feature the first Cloud Profiling Radar (CPR) with Doppler capability in space. JAXA has participated in NASA’s AOS Pre-Phase A activities. The synergy between the GPM DPR and PMM/KuDPR is expected to contribute to the construction of a longer-term precipitation dataset by providing overlapping observations. Update on Cloud Services at NASA GES DISC NASA’s Goddard Earth Sciences Data and Information Services Center (GES DISC), one of two data archive centers for GPM, is moving its data archive to the cloud – with all GES DISC data and services remaining free to all users. This will offer quick access to and subsetting capability for a large volume of data through multiple data access methods (e.g., Amazon Simple Storage Service) and cloud services. Multidisciplinary NASA data will be in one place – the Earthdata Cloud – and available for online analysis and in the cloud environment. Expanded services (e.g., access to the Common Metadata Repository–SpatioTemporal Asset Catalog (CMR-STAC), Harmony – a collective Earth Observing System Data and Information System (EOSDIS) effort to make data access more consistent and easier across all DAACs and Zarr – a data format designed to store compressed multidimensional arrays and thus well suited to cloud computing) are expected to be implemented in the near future. With the migration of GES DISC data to the cloud, some services may look different with details on the exact changes to services coming soon. GPM Core Observatory Boost As George Huffman discussed in his presentation, based on forecasted solar activity, the GPM Core Observatory could run out of fuel as early as October 2025 if the current orbit altitude is maintained. To prolong its operations, NASA and JAXA have decided to boost the GPM Core Observatory orbit by ~35 km (~22 mi), which places GPM at an altitude of ~435 km (~270 mi)) – placing it above the International Space Station orbital altitude. The post-boost operations of the satellite are expected to continue through the early 2030s. The boost is expected to last only 2–4 days and occur in the time window between November 2023 and March 2024 (likely November 7–9, 2023, as stated above), the boost will permanently change the sensors’ Field of Views (FOVs) and likely cause a gap of several months in DPR product delivery. Precipitation in 2040 Sarah Ringerud [GSFC] and George Huffman led this plenary discussion that explored two questions: What comes next? and What does the cutting edge of precipitation science look like 20 years from now? CubeSats, reduced volume of low-frequency-channel observations, shorter sensor lifetimes, increased sampling, and calibration challenges are recognized as inevitable. Exciting new developments are seen in the opportunity for data fusion and interdisciplinary work. Interagency and private sector collaborations are foreseen as critical points for maintaining optimal monitoring of Earth precipitation. Conclusion The 2023 PMM STM brought together scientists from around the world to engage on a range of topics that advance the understanding of precipitation science, algorithms, and contributions to applications. The STM highlighted updates and activities enabled by the PMM scientific community. The closing session provided an opportunity for quick updates from precipitation working group members, who held splinter sessions. These updates were followed by an open discussion and review of PMM action items led by George Huffman. He reminded PMM STM participants of several important and noteworthy items, including updates on the orbit boost and subsequent algorithm adjustments, which will be available on the GPM website and be at the forefront for the project for the next six months; V08 of GPM data products are anticipated by early 2026; the budget reduction for the project – but not for current ROSES projects – will impact activities, including next year’s PMM STM; and the next NASA ROSES call might have a different package of opportunities, not strictly focused on PMM/GPM. He concluded by encouraging the PMM ST to share highlights and publications with the GPM Science Program Management Team as well as to continue to initiate collaborations with other colleagues to keep pushing the boundaries of science and outreach. The next PMM STM will likely be held in September 2024. Details will be posted on the GPM website once they become available. Acknowledgements The author would like to recognize the following individuals, all of whom made contributions to this article: Ali Behrangi [University of Arizona], Anthony Didlake [Penn State University], Gerry Heymsfield [GSFC], George Huffman [GSFC], Matthew Igel [University of California Davis], Toshio Iguchi [Osaka University], Dorian Janney [GSFC/ADNET Systems], Chuntao Liu [Texas A&M Corpus Christi], Veljko Petkovic [UMD], Courtney Schumacher [Texas A&M Corpus Christi], and Joe Turk [NASA/Jet Propulsion Laboratory]. View the full article
  10. 9 Min Read Lagniappe for June 2024 Explore the June 2024 issue, featuring an innovative approach to infrastructure upgrades, how NASA Stennis has helped one family build a generational legacy and more! Explore Lagniappe for June 2024 featuring: NASA Employs Innovative Approach for Key Test Infrastructure Upgrade NASA Stennis Helps Family Build a Generational Legacy Employees Receive Awards and Recognitions Gator Speaks Gator SpeaksNASA/Stennis Gator is certain you have heard the saying, “Together, Everyone Achieves More” when referencing a benefit that comes with being part of a team. Whether you are a high school or college student graduating at this time of year, or an employee at NASA’s Stennis Space Center receiving a NASA Honor Award or Space Flight Awareness Honoree Award last month, we all reach a point where we recognize the positive impact others have had on where we are in life. Since NASA’s founding in 1958, the agency has pushed the boundaries of scientific and technical limits to explore the unknown. NASA has accomplished great things benefiting all of humanity because of people from all backgrounds coming together to contribute their skills as one team to further understanding of the universe. This month’s Lagniappe features multiple pieces of evidence where teamwork is the underpinning to success, including the ongoing High Pressure Water Industrial Facility project at NASA Stennis and a story highlighting one family’s role as part of larger team contributing to the successful engine testing that has taken place for decades at the south Mississippi site. If you need one last example of the benefit of coming together to achieve more, look no further than the Artemis Accords. A milestone was reached in May when Lithuania became the 40th nation to join NASA and the international coalition pursuing a safer space exploration by signing the Artemis Accords. Whether graduating high school or college, working at NASA, or joining the Artemis Accords with NASA, there is a good chance we all eventually arrive at a similar conclusion. While we can accomplish great things individually, being part of a team ultimately means that together, everyone achieves more. NASA Stennis Top News NASA Employs Innovative Approach for Key Test Infrastructure Upgrade Crews are using an innovative engineering approach to upgrade an essential test complex water system that will help ensure the future of large propulsion testing at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About the Infrastructure Upgrades Center Activities NASA Stennis Helps Family Build a Generational Legacy For Lee English Jr., the sound of a ringing phone probably sounds a lot like the roar of a rocket engine test at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About the English Family's Multi-Generational Legacy NASA’s Stennis Space Center Employees Receive NASA Honor Awards NASA Stennis Space Center Director John Bailey and NASA Associate Administrator for Space Operations Kenneth Bowersox presented NASA Honor Awards to Stennis employees during an onsite ceremony May 15. Read More About the NASA Stennis Award Recipients NASA Employee Earns Senior Executive Service Status Eli OuderNASA Longtime NASA employee Eli Ouder has achieved federal Senior Executive Service (SES) status and has been chosen director for the Office of Procurement for NASA’s Stennis Space Center and the NASA Shared Services Center, both located near Bay St. Louis, Mississippi. Created in 1979, SES classification is designed for federal employees who use well-developed executive skills to administer programs at the highest levels of government. The leadership program requires candidates to demonstrate skills in five key areas – leading change, leading people, results driven, business acumen, and building coalitions. Ouder has served as procurement officer since 2022 for NASA Stennis and the NASA Shared Services Center. During this time, he has led a combined 177-person procurement office responsible for managing a diverse and complex procurement portfolio valued at over $7 billion. This broad and high-volume portfolio includes the responsibility of overseeing local Center Support Contracts, Grants and Cooperative Agreements, Small Business Innovative Research contracts, Small Business Technology Transfer program support, Enterprise Software Procurements, agencywide Enterprise Contracts, Simplified Acquisition Threshold Purchases, Government Purchase Card Program management, and other activities in support of the NASA enterprise. During more than 18 years with NASA, Ouder has served in numerous roles while managing and leading the NASA Shared Services Center, including as chief of the Simplified Acquisition Threshold Branch. In that role, Ouder led a major transition of approximately 4,000 Simplified Acquisitions annually from 10 NASA centers to the NASA Shared Services Center. He continued to serve in the role until January 2022 when he became procurement officer for the services center. In December 2022, Ouder was assigned as procurement officer at NASA Stennis as well. 2024 Hurricane Guide Explore essential information for employees at NASA’s Stennis Space Center to navigate the 2024 hurricane season. Download the New Hurricane Guide NASA Space Flight Awareness Program Recognizes Stennis Employees NASA astronaut and Artemis II crew member Victor Glover stands with Honoree Award recipients from NASA’s Stennis Space Center following presentation of the awards during NASA’s Space Flight Awareness Program ceremony on May 4 in Orlando, Florida. Recipients (and their companies), along with ceremony presenters were: (left to right) NASA Stennis Associate Director Rodney McKellip, Shelly Lunsford (SaiTech Inc.), Odie Ladner (Aerojet Rocketdyne, an L3 Harris Technologies company), Rachel Deschamp (Alutiiq Essential Services), Peyton Pinson (NASA), Jack Conley (NASA), Ronnie Good (NASA), and Glover. NASA/Kennedy Space Center NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a May 4 ceremony in Orlando, Florida, for outstanding support of human spaceflight. Jack Conley of Biloxi, Mississippi, is a NASA engineer in the Mechanical Operations Branch of the Engineering and Test Directorate at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. He was honored for his performance in test operations support of NASA’s core spaceflight mission. As backup test conductor, his work was instrumental in the successful Green Run testing of NASA’s SLS (Space Launch System) core stage at NASA Stennis prior to its use on the Artemis I mission. Rachel Deschamp of Pass **********, Mississippi, is an order clerk for Alutiiq Essential Services at NASA Stennis. She was recognized for attention to detail and commitment to success in enabling Alutiiq’s ability to meet and support NASA Stennis’ requirements. Ronnie Good of Waveland, Mississippi, is a NASA engineer in the Safety, Quality and Management Systems Division of the Safety and Mission Assurance Directorate at NASA Stennis. He was recognized for contributions in leading a year-long systems transition used to record facility safety inspections and manage safety findings for NASA Stennis’ test and institutional facilities. Odie Ladner of Poplarville, Mississippi, is a lead welder and test technician for Aerojet Rocketdyne, an L3 Harris Technologies company, at NASA Stennis. Ladner was recognized for his commitment and support of human spaceflight initiatives and programs and performance of weld repairs to RS-25 nozzle tubes in support of certification testing at NASA Stennis. Shelly Lunsford of Long Beach, Mississippi, is a senior forms designer for SaiTech Inc. at NASA Stennis. She was honored for her professionalism and dedication in consolidating NASA Stennis and NASA Shared Services Center’s forms to enable customers and users to increase efficiency and create valid data and reports. Peyton Pinson of Madison, Mississippi, is a NASA engineer in the Mechanical Operations Branch of the Engineering and Test Directorate at NASA Stennis. He was honored for his performance in test operations support to NASA’s core mission of spaceflight. As a mechanical test operations engineer, Pinson supports propulsion activities across the NASA Stennis test complexes. NASA astronaut Victor Glover, Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, Exploration Systems Development Mission Directorate Associate Administrator Catherine Koerner, and NASA Stennis Associate Director Rodney McKellip presented the Honoree Awards. Glover was selected as a NASA astronaut in 2013 and is currently assigned as the pilot of NASA’s Artemis II mission to the Moon. He previously served as the pilot of NASA’s SpaceX Crew-1 mission to the International Space Station as part of Expedition 64. In recognition of flight program contributions, the Stennis employees toured NASA’s Kennedy Space Center in Florida and participated in activities in conjunction with the first launch attempt of NASA’s Boeing Crew Flight Test of the Starliner spacecraft. The Crew Flight Test will launch Starliner and NASA astronauts Butch Wilmore and Suni Williams on a ******* Launch Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil service and contract employees throughout the year and focuses on excellence in quality and safety in support of human spaceflight. The Honoree Award is one of the highest honors presented to employees for their dedication to quality work and flight safety. Recipients must have contributed beyond their normal work requirements toward achieving a particular human spaceflight program goal; contributed to a major cost savings; been instrumental in developing material that increases reliability, efficiency or performance; assisted in operational improvements; or been a key player in developing a beneficial process improvement. For information about Space Flight Awareness awards, visit: Spaceflight Awareness Awards and Criteria – NASA For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA NASA Stennis Leaders Attend Aerospace and Defense Symposium NASA Stennis Center Director John Bailey, right, is shown at the Mississippi Enterprise for Technology’s Mississippi Aerospace and Defense Symposium in Oxford, Mississippi. Bailey and Strategic Business Development Office Manager Duane Armstrong joined fellow aerospace and defense industry leaders and experts to explore opportunities and challenges facing the sector in the state during the event April 29 through May 2. Ole Miss Digital Imaging Services/Thomas Graning NASA Stennis Leaders Recognize Employees for Working Safely Rodney McKellip, associate director of NASA’s Stennis Space Center, and Gary Benton, director of the NASA Stennis Safety and Mission Assurance Directorate, are shown, from right to left, with employees working on the High Pressure Industrial Water Facility project near the Fred Haise Test Stand. The NASA Stennis leaders visited work sites on May 8 to recognize employees with NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Awards for conducting work in a safe manner. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Gary Parker, an employee with Healtheon, Inc., is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Parker, left, received the award for leadership and dedication to safety of the crew working to upgrade an essential test complex water system at NASA Stennis. As one of the crew leaders, Parker ensured all took the safest approach for each task, even as the scale of the project increased. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Matt Roberts, an employee with Healtheon, Inc., is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Roberts, left, received the award for leadership and dedication to safety of the crew working to upgrade an essential test complex water system at NASA Stennis. As one of the crew leaders, Roberts ensured all took the safest approach for each task, even as the scale of the project increased. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Joshua Laurent, an employee with Civil Works Contracting, is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Laurent, left, received the award for continuously demonstrating safe work habits, utilizing the proper personal protective equipment for each task, and always considering environmental factors and hazards within the work area while working on the NASA Stennis potable water system. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. NASA in the News NASA Earns Best Place to Work in Government for 12 Straight Years – NASA X-59 Passes Milestone (nasa.gov) Artemis Accords Reach 40 Signatories as NASA Welcomes Lithuania – NASA NASA Tests Technology, Practices Artemis Moonwalks in Arizona Desert – NASA Employee Profile Cassi Meyer, attorney-adviser for the NASA Office of the General Counsel, is pictured at her home office in Cleveland, where she supports NASA’s efforts to collaborate with commercial industry at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NASA/Cassi Meyer Cassi Meyer can certainly testify that the nontraditional path taken from law school to NASA has landed her in the right place to work with the diverse workforce at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About Cassi Meyer Looking Back: Seeing the Engine Up Close NASA Administrator Robert Frosch (left), along with astronaut candidates Sally Ride and Terry Hart, get a close look at a space shuttle main engine installed on the B-2 Test Stand at Stennis Space Center, then known as National Space Technology Laboratories, during a visit on June 1, 1979. A space agency filled with trailblazers, the late Sally Ride was a pioneer of a different sort. The soft-spoken California physicist broke the gender barrier on June 18, 1983, when she became the first ********* woman in space. Meanwhile, Hart flew as a mission specialist on STS-41C (April 6-13, 1984) and logged a total of 168 hours in space.NASA Additional Resources NASA Stennis Overview – Going Further Certifying Artemis Rocket Engines – NASA Subscription Info Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); *****@*****.tld (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail). The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo ******, and photographer Danny Nowlin. To subscribe to the monthly publication, please email the following to *****@*****.tld – name, location (city/state), email address. Explore More 6 min read Lagniappe for March 2024 Article 3 months ago 7 min read Lagniappe for April 2024 Article 2 months ago 5 min read Lagniappe for May 2024 Explore the NASA Stennis newsletter, Lagniappe for May 2024. This issue features NASA’s announcement of… Article 1 month ago View the full article
  11. NASA/NICER Esta imagen de todo el cielo muestra 22 meses de datos de rayos X registrados por la carga útil del Explorador de la Composición Interior de las Estrellas de Neutrones (NICER, por sus siglas en inglés) de la NASA —que viaja a bordo de la Estación Espacial Internacional— durante sus barridos nocturnos entre los diferentes objetivos a los que apunta. Las principales metas de NICER requieren que esté apunte hacia las fuentes de energía cósmica y siga su recorrido, a medida que la estación espacial hace su órbita alrededor de la Tierra cada 93 minutos. Pero cuando el Sol se pone y la noche cae en este puesto de avanzada orbital, el equipo de NICER mantiene activos sus detectores mientras el instrumento pasa de un objetivo a otro, lo que puede ocurrir ocho veces durante cada órbita. Cada arco marca el recorrido de los rayos X, así como los impactos ocasionales de partículas energéticas, que son captados durante estos movimientos nocturnos. El brillo de cada punto de la imagen es el resultado de estas contribuciones, así como del tiempo que NICER ha dedicado a mirar en esa dirección. Un resplandor difuso satura de rayos X el cielo, incluso lejos de las fuentes donde se origina el brillo. Vista del telescopio NICER, sujeto a la plataforma externa de alojamiento de carga útil de la estación espacial.NASA Descubre más temas de la NASA Ciencia en la estación NASA en español Explora el universo y descubre tu planeta natal **** nosotros, en tu idioma. Aeronáutica en español Space Station Research and Technology View the full article
  12. Cassi Meyer, attorney-adviser for the NASA Office of the General Counsel, is pictured at her home office in Cleveland, where she supports NASA’s efforts to collaborate with commercial industry at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NASA/Cassi Meyer Cassi Meyer can certainly testify that the nontraditional path taken from law school to NASA has landed her in the right place to work with the diverse workforce at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The attorney-adviser is part of the General Law practice group for the NASA Office of the General Counsel, supporting NASA Stennis and the NASA Shared Services Center. Meyer’s responsibilities advising and counseling in areas such as commercial partnerships, FOIA, environmental law, safety and security, export control, ethics, and memoranda of understanding and other agreements in furtherance of NASA’s strategic goals. NASA Stennis truly exemplifies how the agency works together for the benefit of all…It is where NASA collaborates with commercial industry and federal city tenants to achieve success and build a place the Gulf Coast area can unite and thrive around for years to come. Cassi Meyer Attorney-adviser, NASA Office of the General Counsel A large part of Meyer’s work with NASA Stennis focuses on the agency’s collaboration with commercial at the largest propulsion test site in the ******* States. “Everything NASA is doing is so incredibly interesting and inspiring to me as a legal professional,” she said. “We are really here to work with our innovative clients and advise them as to risks and courses of action so that we can get the job done right and efficiently.” Meyer enjoys her role as a legal counselor, which she describes as a way to “help our clients help NASA achieve the agency’s goals, projects, and missions while the next era of space exploration bounds forward.” The Macedonia, Ohio, native first supported NASA as a contractor paralegal in the Office of the General Counsel at NASA’s Glenn Research Center in Cleveland, while taking night classes at the University of Akron School of Law to earn her juris doctorate degree. She continued as a legal honors intern at NASA Glenn for eight months before graduating magna **** laude and taking the bar exam. Meyer started as a law clerk with NASA Stennis in a teleworking capacity around the time she received news about passing the bar. Shortly after, she was hired in her current role of attorney-adviser working with the Center. To date, Meyer has visited seven of the 10 NASA centers to gain a better understanding of NASA culture and operations, including NASA Stennis multiple times in the past year. “Stennis goes the extra mile, and the workforce has been so kind, courteous, and competent,” she said. “There is always someone happy to jump in to teach you something if you do not understand. That’s important in my role as there is a lot of technical expertise needed at times for us lawyers to give the best and most comprehensive counsel we can.” Meyer has embraced the continuous learning experience, which includes building relationships with those that are part of the federal city at the south Mississippi site. “NASA Stennis truly exemplifies how the agency works together for the benefit of all,” she said. “It is where NASA collaborates with commercial industry and federal city tenants to achieve success and build a place the Gulf Coast area can unite and thrive around for years to come.” For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Learn more about the people who work at NASA Stennis View the full article
  13. NASA Associate Administrator for Space Operations Kenneth Bowersox speaks to NASA Stennis employees during the onsite NASA Honor Awards ceremony on May 15. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey speaks to NASA Stennis employees during the onsite NASA Honor Awards ceremony on May 15.NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey receives the Meritorious Senior Executive Presidential Rank Award from NASA Associate Administrator for Space Operations Kenneth Bowersox during the NASA Honor Awards on May 15 at NASA Stennis. Bailey is pictured, from left, with his wife, Lori; daughter, Isabella; and Bowersox. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey and NASA Associate Administrator for Space Operations Kenneth Bowersox presented NASA Honor Awards to Stennis employees during an onsite ceremony May 15. Prior to presenting NASA Honor Awards to Stennis employees, Bailey received the Meritorious Senior Executive Presidential Rank Award. The award from the President of the ******* States is one of the highest awards given to career Senior Executive Service employees. Since joining NASA in 1999, Bailey has served in various management and leadership roles. He was named NASA Stennis center director in April. As director, Bailey is responsible for implementing NASA’s mission in rocket propulsion testing and developing and maintaining NASA’s world-class rocket propulsion test facilities. He has provided leadership and managed critical rocket propulsion test assets exceeding $2 billion in replacement value and managed projects over $221 million. One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission. NASA Honor Awards Recipients MIchael TubbsNASA/Stennis Michael Tubbs of Diamondhead, Mississippi, received the NASA Outstanding Leadership Medal for his work as deputy director of the Office of Strategic Infrastructure within the Center Operations Directorate at NASA Stennis. The Yorktown, Virginia, native ushered in improvements and new initiatives that have helped achieve a cultural transformation and millions in cost-saving measures. His accomplishments also include leading the efforts to complete lease agreements between NASA and Rocket Lab of America for use of the A-3 Test Stand and between NASA and Relativity Space for use of the A-2 Test Stand. Five NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives. David LoranceNASA/Stennis David Lorance of Slidell, Louisiana, received the NASA Exceptional Service Medal for his efforts in furthering the NASA mission through leadership of the Environmental and Health Services Office Division in the Center Operations Directorate at NASA Stennis. Lorance has been responsible for ensuring compliance with numerous environmental programs, managing resources to ensure requirements are met with no impact to mission projects, managing hundreds of regulatory reports for submission on time, and ensuring environmental permits are maintained. Bradley MesserNASA/Stennis Brad Messer of Santa Rosa Beach, Florida, received the NASA Exceptional Service Medal for more than 32 years of service to NASA. Since joining NASA in 1991, Messer has contributed to a variety of propulsion test and engineering projects. As assistant director of the NASA Stennis Engineering and Test Directorate in charge of the Office of Project Management, Planning and Control, he has been responsible for the day-to-day business operations and project activities across the test complex. Messer has also made significant contributions to the strategic planning and ********** of activities essential to the future state of the test complex. Kevin PowerNASA/Stennis Kevin Power of Mandeville, Louisiana, received the NASA Exceptional Service Medal for more than 34 years of service to NASA. As deputy assistant director for the Office of Project Management, Planning and Control in the Engineering and Test Directorate at NASA Stennis, the Port Sulphur, Louisiana, native has consistently delivered support to the NASA Stennis vision and mission. He has helped accomplish center, NASA, and national goals by providing management and engineering leadership, expertise, resources, and guidance to multiple NASA and commercial propulsion test projects, including some of the center’s most critical test infrastructure efforts. Cecile SaltzmanNASA/Stennis Cecile Saltzman of Pass **********, Mississippi, received the NASA Exceptional Service Medal for more than 20 years of service to the NASA Stennis Engineering and Test Directorate. Saltzman’s work has included management of the directorate document process control function, ensuring NASA Stennis test complex assets and support facilities are operated, utilized, and continually improved in providing premier testing services to NASA and commercial customers. The Thibodaux, Louisiana, native has consistently exceeded the agency’s timeline for editing fiscal year accomplishments of all NASA Stennis senior executive service and senior level personnel. John StealeyNASA/Stennis John Stealey of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for more than 35 years of service to NASA, including 26 years at NASA Stennis. The Granville, Tennessee, native has contributed to a range of agency and center projects. Among his accomplishments, Stealey has assisted in overseeing strategic planning for NASA Stennis propulsion test facilities and workforce. He has served in various center roles, including as deputy of the Safety and Mission Assurance Directorate and assistant director of the Engineering and Test Directorate. He also served on the agency-level Exploration System Directorate Standing Review Board, providing expert advice on systems engineering and project management. One NASA Stennis employee received NASA’s Exceptional Public Service Medal. The medal is awarded to non-government individuals or to an individual who was not a government employee during the ******* in which the service was performed for sustained performance that embodies multiple contributions on NASA projects, programs, or initiatives. Rodney KingNASA/Stennis Rodney King of Picayune, Mississippi, received the NASA Exceptional Public Service Medal for efforts as the facility maintenance supervisor on the Synergy-Achieving Consolidated Operations and Maintenance contract at NASA Stennis. In that role, King has been responsible for electrical and high voltage work at the site. King’s service-centered approach has rendered him successful in technical work activities and how he relates to customers, management, peers, and direct reports. He has been recognized by organizations throughout the NASA Stennis federal city for his quick response to outages or calls within their facilities. Four NASA Stennis employees received NASA’s Exceptional Bravery Medal. The medal is awarded to both government and non-government individuals for exemplary and courageous handling of an emergency by an individual who, independent of personal danger, has acted to prevent the loss of human life and/or government property. Barry HodaNASA/Stennis Barry Hoda of Kiln, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Hoda noted the employee was unresponsive, and no pulse or respiration were detected. Hoda immediately began cardiopulmonary resuscitation (CPR) and then synchronized CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life. Leeanna Dunigan of Diamondhead, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. A captain with Chenega Global Protection, Dunigan helped provide cardiopulmonary resuscitation (CPR) to the employee in distress by synchronizing CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life. Brenden Burns of Gulfport, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Burns utilized an automated external defibrillator on an employee in distress. The rapid response and coordinated effort with others were directly responsible for saving a life. Issac DelanceyNASA/Stennis Issac Delancey of Picayune, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Delancey provided the automated external defibrillator while responding to an incident of an employee in distress. Upon arrival, Delancey provided the employee with artificial respiration and coordinated effort with others to maximize the effect of chest compressions. The rapid response and coordinated effort were directly responsible for saving a life. One NASA Stennis employee received the NASA Exceptional Technology Achievement Medal. The medal is awarded to government or non-government individuals for exceptional technology contributions. Richard SmithNASA/Stennis Richard Smith of Picayune, Mississippi, received NASA’s Exceptional Technology Achievement Medal for efforts that led to significant advances to the data acquisition and thrust vector control systems that provide critical support to propulsion testing onsite. Among his contributions, Smith, a contractor on the operations and maintenance contract at NASA Stennis, was the primary software system architect for the thrust vector control work to enable rocket engine gimbal testing. He also worked to ensure safe hydraulic operation of the system. His efforts enabled the NASA Stennis test team to perform successful certification testing of the new RS-25 production engine. Four NASA Stennis employees received the NASA Exceptional Achievement Medal. The medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA. John BoffenmyerNASA/Stennis John Boffenmyer of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for maintaining the highest levels of performance in his remediation responsibilities within the NASA Stennis Center Operations Directorate, resulting in substantial benefits to the agency. As NASA Remediation Program manager for NASA Stennis, Boffenmyer’s work is integral to the Environmental and Health Services Office achieving the NASA Stennis and NASA missions. In conjunction with management of field operations, the Pottsville, Pennsylvania, native has demonstrated outstanding program management, with all audits of the NASA Stennis program proving successful. Thomas MeredithNASA/Stennis Thomas Meredith of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for his efforts as deputy chief engineer at NASA Stennis. During his tenure, the Enterprise, Alabama native has made substantial improvements to the management of test facility hardware in support of the center’s rocket propulsion test operations. Meredith’s leadership and dedication in the management of rocket propulsion test hardware have contributed to two areas of agency emphasis, the sustainment and modernization of mission-critical facilities and the employment of digital technologies to change and improve a process, product, or capability. Kris Mobbs Kris Mobbs of Woolmarket, Mississippi, received NASA’s Exceptional Achievement Medal for his efforts as software engineer in the NASA Stennis Engineering and Test Directorate to lead development of the NASA Data Acquisition Software suite for the acquisition, displaying, and recording of critical data during daily and test activities. Mobbs has led in identifying and implementing new capabilities of the software suite and in development of software packages to help increase the reliability of test data and performance of the test team. As a direct outcome of his leadership, use of the software has expanded to all the NASA Stennis-operated test facilities. Ryan SealsNASA/Stennis Ryan Seals of Carriere, Mississippi, received NASA’s Exceptional Achievement Medal for his contributions to the NASA Stennis propulsion test mission. Since beginning his career with NASA in 2016, the Poplarville, Mississippi, native has proven his expertise regarding test stand components and systems, contributing to the team responsible for testing the RS-25 engine that powers NASA’s SLS (Space Launch System) rocket. Seals also provided depth for the Thad Cochran Test Stand (B-2) team in preparation for hot ***** testing of the SLS core stage. He also has supported commercial partner testing at the E Test Complex. Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency. Huy NguyenNASA/Stennis Huy Nguyen of Slidell, Louisana, received the NASA Early Career Achievement Medal for his contributions as the facility controls engineer in the Electrical Test Operations Branch in the NASA Stennis Engineering and Test Directorate. In that role, Nguyen has supported the daily operations of the High Pressure Gas Facility and High Pressure Industrial Water Facility, which provide critical support to test complex propulsion activities. Among his contributions, Nguyen was instrumental to the success of upgrades, analysis, and practice runs to mitigate any risks during Green Run testing of the SLS (Space Launch System) core stage at NASA Stennis. Kevin OramousNASA/Stennis Kevin Oramous of Slidell, Louisiana, received the NASA Early Career Achievement Medal for his contributions to propulsion test activities and support facilities to directly advance NASA’s rocket propulsion test mission. The New Orleans native began his career at NASA Stennis in 2019 in the Mechanical Operations Branch of the NASA Stennis engineering and Test Directorate, working in the site’s E Test Complex and High Pressure Gas Facility, using his expertise to support operation and systems projects and activities. Oramous also has supported RS-25 testing, propellant and commodity management, and the Thad Cochran Test Stand (B-2) during the SLS (Space Launch System) core stage testing. Jason RichardNASA/Stennis Jason Richard of Mandeville, Louisiana, received the NASA Early Career Achievement Medal for contributions to NASA’s support of commercial propulsion test partners at NASA Stennis. As project engineer at the E-1 Test Facility, Richard ensured completion of facility design, construction, and activation phases for the Relativity Space Aeon-R Thrust Chamber Assembly test project, while maintaining rigorous quality and safety standards. Working with the NASA Stennis Strategic Business Development Office, Richard has helped bridge the propulsion testing and business development teams and worked to implement the office’s information technology strategy. Bradley TyreeNASA/Stennis Bradley Tyree of Picayune, Mississippi, received the NASA Early Career Achievement Medal for his work in the Mechanical Operations Branch in the NASA Stennis Engineering and Test Directorate. Tyree has provided leadership and technical expertise to key projects, including E Test Complex support of SLS (Space Launch System) core stage testing at NASA Stennis. Since being assigned to support RS-25 testing, his knowledge of propellant handling techniques, technical system maintenance, and test processes have proved invaluable and enabled his progression as a propellant transfer engineer and RS-25 test conductor. One NASA Stennis employee received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner. Gregg De FelicibusNASA/Stennis Gregg De Felicibus of Pass **********, Mississippi, received the NASA Silver Achievement Medal for displaying NASA’s core values of safety, integrity, teamwork, excellence, and inclusion while carrying out his work as a contracting officer in the Office of Procurement in support of advancing Space Exploration and NASA’s strategic goals. He has been responsible for the award and management of five critical services contracts valued at over $18.6 million. He has served as an advisor and mentor, has supported the NASA Stennis Small Business Office in achieving its socio-economic goals, has administered over $43 million in contracts, and has negotiated over $5.7 million in cost savings. Download Stennis Space Center 2023 Agency Honor Awards Ceremony Program For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Jun 03, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompson*****@*****.tld / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Keep Exploring Discover More Topics From NASA Stennis About NASA Stennis Multi-User Test Complex NASA Stennis Front Door NASA Stennis Fact Sheets View the full article
  14. 1 min read NASA’s Hubble Temporarily Pauses Science This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA NASA’s Hubble Space Telescope entered safe mode May 24 due to an ongoing gyroscope (gyro) issue, suspending science operations. Hubble’s instruments are stable, and the telescope is in good health. The telescope automatically entered safe mode when one of its three gyroscopes gave faulty telemetry readings. Hubble’s gyros measure the telescope’s slew rates and are part of the system that determines and controls precisely the direction the telescope is pointed. NASA will provide more information early the first week of June. NASA anticipates Hubble will continue making discoveries throughout this decade and possibly into the next, working with other observatories, such as the agency’s James Webb Space Telescope for the benefit of humanity. Launched in 1990, Hubble has been observing the universe for more than three decades and recently celebrated its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries. Resources Download the image above Hubble Pointing and Control Hubble Science Highlights Hubble Images Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD *****@*****.tld Share Details Last Updated May 31, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  15. This artist’s concept features one of multiple initial possible design options for NASA’s Habitable Worlds Observatory. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab NASA announced Friday it selected three industry proposals to help develop technologies for future large space telescopes and plan for the agency’s Habitable Worlds Observatory mission concept, which could be the first space telescope designed to search for life outside our solar system. The mission would directly image Earth-like planets around stars like our Sun and study their atmospheres for the chemical signatures of life, as well as enable other investigations about our solar system and universe. NASA is currently in the early planning stages for this mission concept, with community-wide working groups exploring its fundamental science goals and how best to pursue them. The agency is also in the process of establishing a Habitable Worlds Observatory Technology Maturation project office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Habitable Worlds Observatory will be a historically ambitious mission, so we are taking a deliberate, strategic approach to its development and laying the groundwork now. We will need to bring together diverse expertise from government, academia, and industry, while building on technologies and lessons learned from our previous large space telescopes,” said Mark Clampin, director of the Astrophysics Division at NASA Headquarters in Washington. “With these awards, we’re excited to engage industry to help close technology gaps to make this groundbreaking mission a reality.” In January 2024, NASA solicited industry proposals to help advance key technologies that will eventually be necessary for the Habitable Worlds Observatory. For example, the mission will require a coronagraph – an instrument that blocks the light of a star so we can better see nearby objects – thousands of times more capable than any prior space coronagraph, and a stable optical system moving no more than the width of an atom during its observations. To help further the readiness of these technologies, NASA has now selected the following proposals for two-year, fixed-price contracts with a combined value of $17.5 million, targeted to begin by late summer 2024: “Ultra-stable Telescope Research and Analysis – Critical Technologies (ULTRA-CT)”This project will focus on high-fidelity modeling and subsystem demonstrations to support future development of “ultra-stable” optical systems beyond current state-of-the-art technologies. Principal investigator: Laura Coyle, Ball Aerospace (now BAE Systems) “Technology Maturation for Astrophysics Space Telescopes (TechMAST)”This project seeks to advance the integrated modeling infrastructure required to navigate design interdependencies and compare potential mission design options. Principal investigator: Alain Carrier, Lockheed Martin “STABLE: Systems Technologies for Architecture Baseline”This project will focus on maturing technologies that support telescope features, such as a deployable baffle and a structure to support the optical train, while mitigating the impact of system or environmental disturbances. Principal investigator: Tiffany Glassman, Northrop Grumman This work will continue industry involvement started in 2017 under NASA’s “System-Level Segmented Telescope Design” solicitations, which concluded in December 2023. The new selected proposals will help inform NASA’s approach to planning for the Habitable Worlds Observatory, as the agency builds on technologies from its James Webb Space Telescope and future Nancy Grace Roman Space Telescope and identifies where future investments are needed. To learn more about NASA’s Habitable Worlds Observatory visit: [Hidden Content] -end- Alise Fisher Headquarters, Washington 202-358-2546 *****@*****.tld Share Details Last Updated May 31, 2024 LocationNASA Headquarters Related TermsScience & ResearchAstrophysicsExoplanet ScienceScience Mission DirectorateThe Search for Life View the full article
  16. As part of the legal functional management team, the General Law Practice Group provides leadership in the areas of ethics, fiscal law, environmental law, personnel and labor law, civil rights and equal employment law, information disclosure law, safety and security law, alien residence issues, memoranda of understanding and other agreements, and other administrative law matters in furtherance of NASA’s strategic goals. The Practice Group provides staff to the Administrator by providing legal advice, representing the Administrator in litigation and administrative hearings, and performing special projects. Finally, the Practice Group provides central services in the areas of legislation, litigation, adjudicating claims, and providing legal advice and review for Headquarters’ clients. In the area of legislation, we draft annual NASA authorization bills and other legislative proposals, review legislative proposals developed externally for legal sufficiency and agency-wide impacts, and review testimony and statements of Administration position for consistency with NASA policy and strategic goals. Staff of the Practice Group represents NASA in administrative and judicial litigation that arises from a Headquarters’ activity within our substantive areas of expertise. We also adjudicate claims arising from Headquarters’ activities. The Practice Group is responsible for managing NASA’s ethics program and at Headquarters we provide ethics training, review both public and confidential financial disclosure reports, and provide ethics counseling to employees. Contacts Associate General Counsel: Katie Spear Agency Counsel for Ethics: Adam Greenstone Paralegal Specialists: Olivia Acosta Victor Robinson Attorney Staff: Curtis Borland Lawana Bryant ​Bryan Diederich Douglas Edgecomb Griffin Farris Shari Feinberg Clevette Lee Katie Spear Gretchen Sosbee Kathleen Teale Dan Thomas Organization and Leadership Headquarters OGC Organization OGC Leadership Directory— Contact Information for the Headquarters Leadership and Center Chief Counsels Resources Ethics Program and Resources Ethics HQ Training Schedule Reimbursable In-Kind Travel How do I do this OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer. View the full article
  17. Earth Observer Earth and Climate Earth Observer Home Editor’s Corner Feature Articles News In Memoriams Science in the News More Meeting Summaries Archives 16 min read Summary of the 2023 Ocean Surface Topography Science Team Meeting Severine Fournier, NASA/Jet Propulsion Laboratory, *****@*****.tld Joshua Willis, NASA/Jet Propulsion Laboratory, joshua.k*****@*****.tld Introduction The annual Ocean Surface Topography (OST) Science Team Meeting (STM) provides a forum for the international altimetry community to foster collaboration, address specific issues, and highlight scientific results and applications every year. The meeting location alternates between Europe and the U.S. The 2023 meeting was held in San Juan, Puerto Rico, from November 7–11, 2023. About 130 registrants from more than a dozen different countries attended the meeting. During this meeting the OST Science Team addressed specific technical issues related to the reference altimetry missions, which include the Ocean Topography Experiment (TOPEX)–Poseidon (1992–2006), Jason-1 (2001–2013), Ocean Surface Topography Mission (OSTM)/Jason-2 (2008–2019), Jason-3 (2016–present), and Sentinel-6 Michael Freilich (S6MF; 2020–present) missions. There was also discussion about the upcoming Sentinel-6B mission (scheduled for launch in 2025), which will be a successor to S6MF. The technical issues addressed included algorithm and model improvement, calibration/validation (cal/val) activities, merging TOPEX–Poseidon–Jason–S6MF data with those from other altimetric satellites, initial results from the Surface Water and Ocean Topography (SWOT) mission (2022–present), and preparation for future OST missions (e.g., Sentinel-6B). The remainder of this article provides an overview of the meeting content, then presents an update on the status of current and planned OST missions, followed by a summary of the opening plenary and a couple of the most relevant science highlights from the splinter sessions. More details are available in the full report from the OST STM. The full OST STM program lists all of the presentations from the plenary, splinter, and poster sessions as well as links to many of the presentations and abstracts for the posters. Meeting Overview The meeting began with an opening plenary session, followed by an invited presentation, a series of splinter sessions, and a closing plenary session. The splinter session topics spanned a variety of algorithm improvements and measurement uncertainties, as well as sessions on coastal altimetry, the ********–French Oceanography Satellite (CFOSAT) mission (2019–present), and science topics ranging from climate and oceanography to hydrology and cryosphere science. A complete list of splinters is available online. Some of these are described in more detail in the sections that follow. Status Report on Current OST Missions This section reports on the status of several current and planned OST-related satellite missions. Each is described in its own subsection. Sentinel-6 Michael Freilich S6MF, launched on November 21, 2020, from Vandenberg Space Force Base, successfully completed its commissioning and subsequent entry into routine operations on schedule, one year later. S6MF succeeded Jason-3 as the Reference Mission (i.e., the mission that other altimetry missions are compared to) on April 7, 2022, at which point Jason-3 vacated the reference orbit. The first full mission reprocessing of products was released in July 2022, and another full reprocessing was completed in July 2023. Jason-3 Jason-3, launched on January 17, 2016, continues its extended mission and is fully operational with all redundant systems available. It completed a longer than initially planned 15-month tandem phase with S6MF, which allowed for calibrations of both the primary and redundant instruments. On April 25, 2022, it began operations in an orbit that optimally interleaves ground tracks with S6MF. A second tandem phase with S6MF has been requested for early 2025. The second tandem phase aims to place an uncertainty bound on any long-term drift between the two missions. Copernicus Copernicus Sentinel-3A and -3B Sentinel-3A and -3B are identical satellites that were launched in February 16, 2016 and April 25, 2018, respectively. Similar to past missions in the reference orbit, a tandem phase with a separation of 30 seconds between the two satellites was performed to provide cross-calibration. Subsequently, Sentinel-3B was placed in a nominal orbit 140° out of phase with Sentinel-3A. Both missions now provide sea level measurements along high inclination tracks as part of their routine operations. A full mission reprocessing of land altimetry Level-2 (L2) products was completed in 2023. Copernicus Sentinel-6B and 6C Missions and Beyond Identical to S6MF, Sentinel-6B is planned as its successor. The spacecraft and instrument have been completed and is now in storage awaiting launch in 2025. Sentinel-6B will assure operational continuity through the end of 2030. An additional satellite, Sentinel-6C, is under consideration by NASA, the National Oceanic and Atmospheric Administration (NOAA), the ********* Organization for the Exploitation of Meteorological Satellites (EUMETSAT), the ********* Space Agency (ESA), and the Centre National d’Études Spatiale (CNES) [French Space Agency] to continue observations through 2035. Surface Water Ocean Topography SWOT launched on December 16, 2022. The primary instrument on SWOT, Ka-band radar interferometer (KaRIn), is the first space-borne, wide-swath altimetry instrument, capable of high-resolution measurements of the water height in the ocean and freshwater bodies. After commissioning and initial calibration, beta products became available to the science team in August 2023. The first images from SWOT were released, and the first results are showing great promise for the instrument capabilities (see NASA and CNES news). Discussion of Future Missions Relevant to OST The meeting continued with presentations on several existing and upcoming missions in various stages of development, each with applications relevant to OST. Each presentation included information on the mission’s status and development plans, as described below. Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) is one of six, high-priority candidate Copernicus Sentinel Expansion missions that are being studied to address the ********* Union’s needs, as well as to extend the current capabilities of the Copernicus space components. CRISTAL will carry a multifrequency radar altimeter and microwave radiometer to ensure continuity and improve the quality of sea ice thickness measurements compared to its predecessor, Cryosat-2, and provide the first space-based measurements of overlying snow depth. Recommendations from the OST Science Team After discussing these missions and other issues concerning altimetry, the OST STM adopted several recommendations to particular topics relating to these missions, which are named and described in the subsections that follow: S6MF Extended Operations Phase Orbit. In light of that fact that user needs remain very high for altimetry observations complementary to the reference mission, the OST ST recommends extending operations of S6MF – assuming it ******** in good health – beyond the time when Sentinel-6B has become the reference mission. Specifically, the OST ST recommends: Moving S6MF to an exact repeat orbit with the same characteristics as the reference orbit – except for a phase difference of 163° along the orbit, either ahead or behind Sentinel-6B – resulting in an interleaved ground-track to the reference orbit. (For reference, Jason-3 currently flies 163° behind S6MF.) Adopting the same data availability requirements as expressed in the End-User Requirements Document (EURD) (R-U- 00460/490/500/515/520/570/573/576) for the extended operations phase of S6MF, with the understanding that Sentinel-6B operations will be prioritized over S6MF. Jason-3 Orbit Change. The OST ST endorses the current plan to move Jason-3 to a Long Repeat Orbit (LRO) immediately after the conclusion of second tandem with S6MF. This 371-nodal-day LRO should be the same as the one occupied by Jason-2. The first two LRO cycles should be phased such that Jason-3 will interleave the two Jason-2 LRO cycles, each shifted by 2 km (1.2 mi). This will result in a systematic 2-km global grid combining Jason-2 and Jason-3 LRO data. The OST ST also recommends two additional LRO cycles that revisit the Jason-2 LRO ground tracks to fill in gaps and reduce mean sea surface errors. Climate Quality Accuracy in Future Mission To achieve accuracy in global and regional sea level change as detailed in the Global Climate Observing System (GCOS) requirements, the OST ST noted that it will be necessary to maintain and continue to improve the accuracy of orbital determination systems, such as those achieved using a combination of three tracking systems – Satellite Laser Ranging [SLR], Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Global Navigation Satellite System [GNSS]). The OST ST has demonstrated that these tracking systems are necessary to achieve maximum accuracy on the determination of regional sea level trends and strongly recommends that such accuracy be maintained in the design of Sentinel-6C. The OST ST also noted that accuracy of the Climate Data Record requires continued maintenance or improvement of the terrestrial reference frame, which also relies on these tracking systems. Finally, requirements on other aspects of the altimetric measurement system must also be maintained or continue to improve. Synergies with Argo and GRACE Argo (which is an international fleet of robotic instruments that drift with the ocean currents and measure the temperature and salinity of the ocean) plays a critical role in collecting data related to numerous cross-cutting, climate-related science topics important to altimetry measurements (missions discussed earlier in this article), to gravity measurements [e.g., the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow-On missions], and to broader science communities. The recent implementation of the Deep Argo mission has rapidly expanded observations of the ocean below 2000 m (~6500 ft). Data collected at these depths has helped to resolve questions about variations of temperature and salinity over the full depth of the ocean and to close regional and global sea level budgets. The OST ST recommends substantially increasing support for the OneArgo Program (which has been part of Argo’s design plan since 2020), including adding resources to expand the array to include global implementation of Deep Argo and increase coverage by Core Argo (the fleet of shallower floats) in polar regions and marginal seas. Altimetry Product Evolution OST ST recommends that agencies study the performance of the three latency products – Near Real-Time (NRT), Short Time-Critical (STC), and Non-Time Critical (NTC) – to ensure each continues to meet user needs or determine if their performance and latencies be redefined or adjusted. This should be considered across all platforms. Potential Gap between CryoSat-2 and CRISTAL The OST ST recommends studies to address which satellites, airborne operations, or other assets might help fulfill scientific needs for high-latitude ocean and ice elevation measurements during a potential gap between CryoSat-2 and CRISTAL. The OST ST also recommends minimizing the probability of a gap by extending CryoSat-2 operations through at least 2028 and avoiding delays in the launch of CRISTAL to the extent possible. Integrity of the Altimetry Constellation and Instrument Function In light of ongoing efforts to launch a large number of communications satellites in orbits close to the 1336 km (830 mi) altimetry constellation, the OST ST recommends that agencies take steps to determine and establish sufficient margins that will safeguard altimetry missions in both reference and polar orbits from collision, debris, and interference with their passive and active instruments. Opening Plenary Session Highlights Severine Fournier [NASA/Jet Propulsion Laboratory (JPL)] began with welcoming remarks on behalf of all of the project scientists, who (in addition to herself) include Josh Willis [NASA/JPL], Pascal Bonnefond [CNES], Eric Leuliette [NOAA], Remko Scharroo [EUMETSAT], and Alejandro Egido [ESA]. In particular, Fournier reminded the participants of the addition of online forums, available until the next OST STM that can be accessed after logging into the site. In addition, Fournier announced that Egido will replace Craig Donlon as the ESA Project Scientist. Program managers gave presentations on the status of altimetry and oceanographic programs at their respective institutions including: Nadya Vinogradova-Shiffer [NASA Headquarters], Annick Sylvestre-Baron [CNES], Estelle Obligis [EUMETSAT], Eric Leuliette, and Jérôme Bouffard [ESA]. In addition, Josh Willis presented Space Stories, a think tank for U.S.-based creatives and technologists to develop new storytelling approaches to sea level rise. This initiative is organized by Garage Stories and consists of masterclasses that were held in November 2023 with 15 participants across 5 teams. The winning team will have the opportunity to present their concept at JPL in 2024. Finally, Fernando E. Pabón [Caribbean Center for Rising Seas—Director] spoke about climate issues that impact Puerto Rico. The island has about three million inhabitants and faces several climatic issues, including devastating impacts from hurricanes (with a hurricane season stretching over six months every year), sea level rise, and droughts. While Puerto Rico has a lot of outdated infrastructures, the territory has the most advanced regulatory environment in the Caribbeans. Pabón explained the economic, social, and geographical urgency of making good decisions to help the communities facing climatic challenges with a long-term vision. One of the goals of the Caribbean Center for Rising Seas is to work with practitioners and the public to change urban development practices, update building codes, zoning, and land-use regulations and spread the knowledge and understanding of sea level rise and flooding to the public. Science Highlights This section provides two scientifically compelling results that were shown during the splinter sessions. Complete coverage of the results shared during these sessions can be found at the website at the start of the article. Synergies between Argo, GRACE, and Altimetry Human activities are increasing the concentration of greenhouse gases, which have increased global temperature since the beginning of the twentieth century. Greenhouse gases trap energy within the Earth system. The ocean absorbs much of this excess energy in the form of heat (> 90%), acting as a huge heat reservoir. Global ocean heat content (GOHC) is therefore a key component in the Earth’s energy budget. Accurate knowledge of the GOHC change allows us to assess the Earth Energy Imbalance (EEI), which refers to the difference between the amount of energy the Earth receives from the Sun and the amount of energy it radiates back into space. Various methodologies exist to estimate EEI from the GOHC. A 2022 article in Earth System Science Data describes the space geodetic approach, which relies on satellite altimetry and gravimetry measurements. Satellite altimetry is used to measure sea level rise, which is caused by both the expansion of warming ocean waters and the addition of freshwater to the ocean from melting land ice (Greenland and Antarctic ice sheets and mountain glaciers). Gravimetric measurements are used to measure ocean mass change, which can be used to estimate the contribution to sea level rise from freshwater ice melt on land. By combining gravimetry and altimetry, it is possible to estimate the thermal expansion of the entire ocean and scale it to estimate EEI – see Figure 1. The magnitude of EEI is small (0.5–1.0 W/m2) compared to the total amount of energy entering and leaving the climate system (~340 W/m2). Therefore, a high level of precision and accuracy are required to estimate the EEI mean (< 0.3 W/m2) and its time variations at decadal scales (< 0.1 W/m2). In this regard, the space geodetic approach emerges as a promising candidate capable of complementing other observing system elements aimed at measuring EEI. Figure 1. This graph shows the decadal variations of the Earth Energy Imbalance (EEI) estimated from the space geodetic method that combines altimetry and gravimetric measurements (******) and direct measurements of solar radiation at the top of the atmosphere from the Clouds and the Earth’s Radiant Energy System (CERES) instrument (blue). The grey shaded area corresponds to the space geodetic method’s uncertainty. Image credit: Michael Ablain/Collect Localisation Services (CLS), France Large-scale Ocean Circulation Variability and Change The year-to-year circulation changes along the coast of the western U.S. can have significant impact on the transport of nutrients that affect fisheries. A 2021 article published in the journal Limnology and Oceanography described a study that used ocean currents derived from satellite altimetry to understand the trajectory of water masses from the southern coast of California to the Pacific Northwest. The results show that after a year, subtropical/tropical water masses can reach the Oregon coast from the Southern California Bight (30 °N), and in multiple years from even further south (~26 °N–27 °N) and west. During warmer than average years associated with El Niño Southern Oscillation (1997–1998, 2002–2003, 2004–2005, 2005–2006, 2009–2010, 2014–2015, 2015–2016, 2016–2017), these subtropical/tropical waters masses reached further north compared to other years – see Figure 2. This shift is due to the increase poleward wind stress observed in the California Current. The research team also showed that these tropical warm waters tend to transport “warm water” zooplankton species with a lower **** content. The shift in zooplankton species can impact the young salmon population, which prefer fatty cold-water zooplankton, entering the ocean off the Oregon coast. Figure 2. This graph shows the density of the water mass traveling northward from the tropics and sub-tropics toward the Pacific Northwest coast during [first three panels] the average of Warm Years (1997–1998, 2002–2003, 2004–2005, 2005–2006, 2009–2010, 2014–2015, 2015–2016, 2016–2017) for January, February, and March, and [last three panels] normal, or Other Years (remaining 15 years excluded from the ‘warm year episodes’ between 1997–2020) for January, February, and March. Off the coast of Oregon, warm water masses are denser during warm years. Image credit: Ted Strub/Oregon State University Closing Plenary Session Highlights The closing plenary session included discussions, notably about the key points that were addressed during the opening session and splinter sessions. Cristina Martin-Puig [EUMETSAT] gave a presentation on the definition of the new Geophysical Data Record (GDR) standards (GDR-G) in a multimission context. There are currently 11 altimeters operating with data quality that continues to undergo improvement. While agencies have been coordinating to homogenize processing baselines across missions, a full harmonization between missions was never discussed in detail until now. All agencies are now working in full collaboration to define a set of common standards and the best data processing practices to ensure full harmony between missions. Conclusion During the closing session, the OST ST adopted several recommendations – see “Recommendations from the OST Science Team” above for details. The OST STM expressed strong support for the continuation of the ****** Indo–French Satellite AltiKa (SARAL) drifting ******* for as long as possible, with its altimeter being the most important for future improvements in mean sea surface and gravity. The OST STM ended with acknowledgements and kudos, several of which refer to recommendations made by the OST ST. The team expressed its appreciation to NASA and CNES for the successful launch and commissioning of the SWOT mission and its revolutionary new wide-swath altimeter for ocean and surface water. Additional acknowledgements can be found in the full OST STM report link referenced in the introduction of this article. Overall, the meeting fulfilled all of its objectives. It provided a forum for updates on the status of Jason-3, S6MF, and other relevant missions and programs. It also offered detailed analyses of mission observations by the splinter groups. The team concluded that data from the Jason-3 and S6MF altimeters continue to meet the accuracy and availability requirements of the science community. An international altimetry meeting to celebrate the 30-year anniversary of altimetry will be held in Montpellier, France on September 2–7, 2024. Acknowledgment: This article is based on the official meeting report, referenced in the introduction of this article and prepared in cooperation with all of the OST STM chairs: Severine Fournier [JPL]; Josh Willis [JPL]; Pascal Bonnefond [Observatoire de Paris, Laboratoire Systèmes de Référence Temps-Espace (SYRTE)/CNES]; Eric Leuliette [NOAA]; Remko Scharroo [EUMETSAT]; and Alejandro Egido [ESA]. Share Details Last Updated May 31, 2024 Related Terms Uncategorized View the full article
  18. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video In OSI’s Environmental Management Division, we believe every day is Earth Day as we enable environmentally sound mission success through leadership of NASA efforts to comply with environmental laws and advance stewardship and sustainability. See more about what we do for the environment in the Office of Strategic Infrastructure’s (OSI) Earth Day video and nasa.gov/emd where we showcase our programs. Thank you for all you do for protecting our environment. View the full article
  19. General Counsel Iris Lan Deputy General Counsel Christine Pham (Acting) Director of Legal Operations Bryan R. Diederich (Acting) Associate General Counsel for Commercial and Intellectual Property Law Practice Group, Headquarters Karen Reilley Associate General Counsel for Contracts and Acquisition Integrity Law Practice Group, Headquarters Scott Barber Associate General Counsel for General Law Practice Group, Headquarters Katie Spear Associate General Counsel for International and Space Law Practice Group, Headquarters Rebecca Bresnik Agency Counsel for Ethics, Headquarters Adam F. Greenstone Director of the NASA Acquisition Integrity Program (****** Remedies) and the Agency Counsel for Acquisition Integrity, Headquarters Monica Aquino-Thieman Agency Counsel for Intellectual Property, Headquarters Trenton Roche Chief Counsel, Ames Research Center Dan Hymer (Acting) Chief Counsel, Armstrong Flight Research Center Brett Swanson Chief Counsel, Glenn Research Center Callista M. Puchmeyer Chief Counsel, Goddard Space Flight Center Dave G. Barrett Chief Counsel, Johnson Space Center Randall T. Suratt (Acting) Chief Counsel, Kennedy Space Center Alex Vinson Chief Counsel, Langley Research Center Andrea Z. Warmbier Chief Counsel, Marshall Space Flight Center Pam A. Bourque Chief Counsel, NASA Management Office at JPL James T. Mahoney Chief Counsel, NASA Shared Service Center Ron Bald Chief Counsel, Stennis Space Center Ron Bald View the full article
  20. General Counsel Iris Lan Deputy General Counsel Christine Pham (Acting) Director of Legal Operations Bryan R. Diederich (Acting) Associate General Counsel for Contracts and Acquisition Integrity Law Practice Group Scott Barber Associate General Counsel for General Law Practice Group Katie Spear Associate General Counsel for Commercial and Intellectual Property Law Group Karen M. Reilley Associate General Counsel for International and Space Law Practice Group Rebecca Bresnik Agency Counsel for Ethics Adam F. Greenstone Director, Acquisition Integrity Program Monica Aquino-Thieman View the full article
  21. “[My proudest moment] was deciding post-college what to do [in my life] and not asking for advice anymore. It’s one of those things where I love asking for advice but sometimes almost too much where I feel like it over influences what I want to do. And in my career, it was the same way. People would keep telling me, ‘Oh, you’re really good at this. You should probably go into this position, or you should try this.’ Now, I sit in certain moments and decide, is this a position I want to take and pursue, or do I really want to do [something else] instead? And then, if I fail or succeed, at least it was my choice. “So, that moment, that first time [post-college], I realized I had built enough confidence to pursue and do things I wanted to do, whether or not it was something that other people could see me succeed at. I am the type of person where I can succeed at a lot of things because I work hard. I’ll put in my effort, but if I don’t have that interest in it or if it doesn’t align with my current values, I’m not going to get very far in it, and I’m going to be **********, so I don’t know why I kept trying to entertain that idea. “These days, I can still take advice from people but not let it totally dictate or control the path that I want to go down or the decisions I want to make because it’s my choice. Much of my path stemmed from my confidence in making the decision, filtering out the judgment of certain people, and realizing that someone might think differently about me this way, but does that really matter?” – Anh Nguyen, Parachute Engineer, Commercial Crew Program, NASA’s Kennedy Space Center Image Credit: NASA/Glenn Benson Interviewer: NASA/Tahira Allen Check out some of our other Faces of NASA. View the full article
  22. Technicians inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida prepare to rotate the agency’s largest planetary mission spacecraft, Europa Clipper, to a vertical position on Tuesday, May 28, 2024, as part of prelaunch processing. Photo credit: NASA/Kim Shiflett Crews rotated to vertical then lifted NASA’s Europa Clipper spacecraft from its protective shipping container after it arrived at the Payload Hazardous Servicing Facility (PHSF) at the agency’s Kennedy Space Center in Florida on May 28. The spacecraft, which will collect data to help scientists determine if Jupiter’s icy moon Europa could support life, arrived in a ******* States Air Force C-17 Globemaster III cargo plane at Kennedy’s Launch and Landing Facility on May 23. The hardware traveled more than 2,500 miles from NASA’s Jet Propulsion Lab in Southern California where it was assembled. The team transported Europa Clipper to the PHSF and will perform a number of activities to prepare it for launch, including attaching the high gain antenna, affixing solar arrays to power the spacecraft, and loading propellants that will help guide the spacecraft to its destination. On board are nine science instruments to gather detailed measurements while Europa Clipper performs approximately 50 close flybys of the Jovian moon. Research suggests an ocean twice the volume of all the Earth’s oceans exists under Europa’s icy crust. The Europa Clipper spacecraft will launch on a SpaceX Falcon Heavy rocket from NASA Kennedy’s Launch Complex 39A. The launch ******* opens Thursday, Oct. 10. View the full article
  23. NASA June 1 marks the beginning of the 2024 hurricane season in the Atlantic Ocean. NASA observes and studies hurricanes from space, both with views from the space station and with satellites. This vantage point helps scientists understand how climate change impacts hurricanes and learn how communities can better prepare for tropical cyclones in a warmer world. On Aug. 29, 2023, one of the International Space Station’s external high-definition cameras captured Hurricane Idalia in the Gulf of Mexico. Idalia was a category 1 storm over the Gulf of Mexico with sustained winds of 140 kilometers (85 miles) per hour. As the storm moved north over the Gulf, it quickly strengthened and made landfall over the Big Bend region of Florida on the morning of August 30, 2023, as a category 3 storm. Image Credit: NASA View the full article
  24. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An illustration created by Luis Rivera Hernandez depicting his interpretation of the Mars Aerial and Ground Global Intelligent Explorer (MAGGIE), a novel aerospace concept study led by Ge-Cheng Zha with Coflow Jet, LLC Space technology might look a bit different decades from now. The NASA Innovative Advanced Concepts (*****) program studies innovative, technically credible, advanced projects that could one day “change the possible” in aerospace. To help people understand what these innovations might look like, ***** has turned to artists and graphic designers in a global contest to create posters to visualize future technologies under development. The NASA Space Tech Art Challenge: Imagine Tomorrow received 480 entries from 39 countries. Nine submissions were awarded an even share of the $3,000 prize. The winning submissions from the following individuals depict what the technology might look like, and how and where the concepts might be used in future exploration. Rizky Irawan, Indonesia Luis Rivera, USA Yi Cai, USA Holly Pascal, USA Beatriz Bronoski, Brazil Matthew Turner, ******* Kingdom Joseph Henney, USA Bertrand Dano, USA Hadley Nicole D., USA The NASA Tournament Lab – part of the Prizes, Challenges, and Crowdsourcing program within the agency’s Space Technology Mission Directorate – managed the challenge. The NASA Tournament Lab facilitates crowdsourcing to tackle agency science and technology challenges, engaging the global community to seek new ideas and approaches that will ultimately benefit all of humanity. Freelancer.com administered the challenge for NASA. To learn more about NASA prizes and challenges opportunities, visit: www.nasa.gov/get-involved Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate NASA Innovative Advanced Concepts Get Involved NASA Prizes, Challenges, and Crowdsourcing Share Details Last Updated May 31, 2024 EditorLoura Hall Related TermsNASA Innovative Advanced Concepts (*****) ProgramSpace Technology Mission Directorate View the full article
  25. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) It’s not just rising air and water temperatures influencing the decades-long decline of Arctic sea ice. Clouds, aerosols, even the bumps and dips on the ice itself can play a role. To explore how these factors interact and impact sea ice melting, NASA is flying two aircraft equipped with scientific instruments over the Arctic Ocean north of Greenland this summer. The first flights of the field campaign, called ARCSIX (Arctic Radiation Cloud Aerosol Surface Interaction Experiment), successfully began taking measurements on May 28. Two NASA aircraft are taking coordinated measurements of clouds, aerosols and sea ice in the Arctic this summer as part of the ARCSIX field campaign. In this image from Thursday, May 30, NASA’s P-3 aircraft takes off from Pituffik Space Base in northwest Greenland behind the agency’s Gulfstream III aircraft.Credit: NASA/Dan Chirica “The ARCSIX mission aims to measure the evolution of the sea ice pack over the course of an entire summer,” said Patrick Taylor, deputy science lead with the campaign from NASA’s Langley Research Center in Hampton, Virginia. “There are many different factors that influence the sea ice. We’re measuring them to determine which were most important to melting ice this summer.” On a completely clear day over smooth sea ice, most sunlight would reflect back into the atmosphere, which is one way that sea ice cools the planet. But when the ice has ridges or darker melt ponds — or is dotted with pollutants — it can change the equation, increasing the amount of ice melt. In the atmosphere, cloudy conditions and drifting aerosols also impact the rate of melt. “An important goal of ARCSIX is to better understand the surface radiation budget — the energy interacting with the ice and the atmosphere,” said Rachel Tilling, a campaign scientist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. About 75 scientists, instrument operators, and flight crew are participating in ARCSIX’s two segments based out of Pituffik Space Base in northwest Greenland. The first three-week deployment, in May and June of this year, is timed to document the start of the ice melt season. The second deployment will occur in July and August to monitor late summer conditions and the start of the freeze-up *******. “Scientists from three key disciplines came together for ARCSIX: sea ice surface researchers, aerosol researchers, and cloud researchers,” Tilling said. “Each of us has been working to understand the radiation budget in our specific area, but we’ve brought all three areas together for this campaign.” Two aircraft will fly over the Arctic during each deployment. NASA’s P-3 Orion aircraft from the agency’s Wallops Flight Facility in Virginia, will fly below the clouds at times to document the surface properties of the ice and the amount of energy radiating off it. The team will also fly the aircraft through the clouds to sample aerosol particles, cloud optical properties, chemistry, and other atmospheric components. A Gulfstream III aircraft, managed by NASA Langley, will fly higher in the atmosphere to observe properties of the tops of the clouds, take profiles of the atmosphere above the ice, and add a perspective similar to that of orbiting satellites. The teams will also compare airborne data with satellite data. Satellite instruments like the Multi-angle Imaging Spectroradiometer and the Moderate Resolution Imaging Spectroradiometer will provide additional information about clouds and aerosol particles, while the Ice, Cloud, and land Elevation Satellite 2 will provide insights into the ice topography below both satellites and aircraft. The aircraft will fly coordinated routes to take measurements of the atmosphere above ice in three-dimensional space, said Sebastian Schmidt, the mission’s science lead with the University of Colorado Boulder. “The area off the northern coast of Greenland can be considered the last bastion of multi-year sea ice, as the Arctic transitions to a seasonally ice-free ocean,” Schmidt said. “By observing here, we will gain insight into cloud-aerosol-sea ice-interaction processes of the ‘old’ and ‘new’ Arctic — all while improving satellite-based remote sensing by comparing what we’re seeing with the airborne and satellite instruments.” By Kate Ramsayer NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated May 31, 2024 EditorKate D. RamsayerContactKate D. Ramsayer*****@*****.tldLocationGoddard Space Flight Center Related TermsEarthAirborne ScienceGoddard Space Flight CenterIce & GlaciersLangley Research CenterSea IceWallops Flight Facility Explore More 5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline Article 2 months ago 5 min read Arctic Sea Ice 6th Lowest on Record; Antarctic Sees Record Low Growth Arctic sea ice likely reached its annual minimum extent on September 19, 2023, making it… Article 8 months ago 4 min read NASA Ice Scientists Take Flight from Greenland to Study Melting Arctic Ice Article 2 years ago View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.