Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    1,464
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A graphic representation of a laser communications relay between the International Space Station, the Laser Communications Relay Demonstration spacecraft, and the Earth.Credit: NASA/Dave Ryan A team at NASA’s Glenn Research Center in Cleveland streamed 4K video footage from an aircraft to the International Space Station and back for the first time using optical, or laser, communications. The feat was part of a series of tests on new technology that could provide live video coverage of astronauts on the Moon during the Artemis missions. Historically, NASA has relied on radio waves to send information to and from space. Laser communications use infrared light to transmit 10 to 100 times more data faster than radio frequency systems. From left to right, Kurt Blankenship, research aircraft pilot, Adam Wroblewski, instrument operator, and Shaun McKeehan, High-Rate Delay Tolerant Networking software developer, wait outside the PC-12 aircraft, preparing to take flight. Credit: NASA/Sara Lowthian-Hanna Working with the Air Force Research Laboratory and NASA’s Small Business Innovation Research program, Glenn engineers temporarily installed a portable laser terminal on the belly of a Pilatus PC-12 aircraft. They then flew over Lake Erie sending data from the aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico, where scientists used infrared light signals to send the data. The signals traveled 22,000 miles away from Earth to NASA’s Laser Communications Relay Demonstration (LCRD), an orbiting experimental platform. The LCRD then relayed the signals to the ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) payload mounted on the orbiting laboratory, which then sent data back to Earth. During the experiments, High-Rate Delay Tolerant Networking (HDTN), a new system developed at Glenn, helped the signal penetrate cloud coverage more effectively. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video 4K video footage was routed from the PC-12 aircraft to an optical ground station in Cleveland. From there, it was sent over an Earth-based network to NASA’s White Sands Test Facility in Las Cruces, New Mexico. The signals were then sent to NASA’s Laser Communications Relay Demonstration spacecraft and relayed to the ILLUMA-T payload on the International Space Station. Video Credit: NASA/Morgan Johnson “These experiments are a tremendous accomplishment,” said Dr. Daniel Raible, principal investigator for the HDTN project at Glenn. “We can now build upon the success of streaming 4K HD videos to and from the space station to provide future capabilities, like HD videoconferencing, for our Artemis astronauts, which will be important for crew health and activity coordination.” Mechanical Engineer Jeff Pollack finalizes his design for the integration of the laser communications terminal into the PC-12 research aircraft.Credit: NASA/Sara Lowthian-Hanna After each flight test, the team continuously improved the functionality of their technology. Aeronautics testing of space technology often finds issues more effectively than ground testing, while remaining more cost-effective than space testing. Proving success in a simulated space environment is key to moving new technology from a laboratory into the production phase. “Teams at Glenn ensure new ideas are not stuck in a lab, but actually flown in the relevant environment to ensure this technology can be matured to improve the lives of all of us,” said James Demers, chief of aircraft operations at Glenn. The flights were part of an agency initiative to stream high-bandwidth video and other data from deep space, enabling future human missions beyond low Earth orbit. As NASA continues to develop advanced science instruments to capture high-definition data on the Moon and beyond, the agency’s Space Communications and Navigation, or SCaN, program embraces laser communications to send large amounts of information back to Earth. The optical system temporarily installed on the belly of the PC-12 aircraft has proven to be a very reliable high-performance system to communicate with prototype flight instrumentation and evaluate emerging technologies to enhance high-bandwidth systems.Credit: NASA/Sara Lowthian-Hanna While the ILLUMA-T payload is no longer installed on the space station, researchers will continue to test 4K video streaming capabilities from the PC-12 aircraft through the remainder of July, with the goal of developing the technologies needed to stream humanity’s return to the lunar surface through Artemis. Explore More 10 min read LIVE: NASA is with you from Oshkosh Article 2 hours ago 5 min read NASA’s 21st Northrop Grumman Mission Launches Scientific Studies to Station Article 1 day ago 5 min read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On Article 2 days ago View the full article
  2. On July 23, 1979, space shuttle Enterprise completed its time as a pathfinder vehicle at Launch Pad 39A at NASA’s Kennedy Space Center (KSC) in Florida. Workers towed it back to the Vehicle Assembly Building (VAB). During its four-month stay at KSC, Enterprise validated procedures for the assembly of the space shuttle stack and interfaces at the launch pad. The tests proved valuable in preparing space shuttle Columbia for its first orbital mission in 1981. Earlier, Enterprise proved the flight worthiness of the shuttle during atmospheric tests and certified the vehicle’s structure to handle launch loads. Later, Enterprise supported the Challenger and Columbia accident investigations. Following a restoration, Enterprise went on public display, first near Washington, D.C., and then in New York City where it currently resides. Left: NASA Administrator James C. Fletcher, left, poses with several cast members and creator of the TV series “Star Trek” at Enterprise’s rollout. Middle: Enterprise moments after release from the back of the Shuttle Carrier Aircraft during the first Approach and Landing Test free flight. Right: At NASA’s Marshall Space Flight Center in Huntsville, Alabama, for vibration tests, a shuttle orbiter joins an External Tank and twin Solid Rocket Boosters for the first time. On Jan. 5, 1972, President Richard M. Nixon directed NASA to build the reusable space shuttle, formally called the Space Transportation System (STS). Manufacture of the first components of Orbital Vehicle-101 (OV-101) at the North ********* Rockwell Corporation’s plant in Downey, California, began on June 4, 1974. This first vehicle, designed for ground and atmospheric flight tests, received the name Enterprise, following a dedicated write-in campaign by fans of the television science fiction series “Star Trek.” Enterprise rolled out of Rockwell’s Palmdale facility on Sept. 17, 1976. In January 1977, workers trucked Enterprise 36 miles overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB) in California, for the Approach and Landing Tests (ALT), a series of increasingly complex flights to evaluate the shuttle’s air worthiness. At Dryden, workers placed Enterprise on the back of the Shuttle Carrier Aircraft (SCA), a modified Boeing 747. The duo began taxi runs in February, followed by the first captive inactive flight later that month. The first captive active flight with a crew aboard the orbiter took place in June, and Enterprise made its first independent flight on Aug. 12. Four additional approach and landing flights completed the ALT program by October. In March 1978, Enterprise began its first cross-country trip from Edwards to the Redstone Arsenal’s airfield in Huntsville, Alabama. Workers trucked Enterprise to the adjacent NASA Marshall Space Flight Center where engineers for the first time mated it with an External Tank (ET) and inert Solid Rocket Boosters (SRB) in the Dynamic Structural Test Facility. For the next year, engineers conducted a series of vibration tests on the combined vehicle, simulating conditions expected during an actual launch. Left: Enterprise atop its Shuttle Carrier Aircraft (SCA) touches down on the runway at NASA’s Kennedy Space Center in Florida. Middle: Workers remove Enterprise from the SCA in the Mate-Demate Device. Right: Workers tow Enterprise into the Vehicle Assembly Building. Left: At NASA’s Kennedy Space Center in Florida, workers in the Vehicle Assembly Building prepare to lift Enterprise. Middle: Enterprise in the vertical position. Right: Workers lower Enterprise for attachment to the External Tank and Solid Rocket Boosters. Following the year-long series of tests at Marshall, on April 10, 1979, NASA ferried Enterprise atop its SCA to KSC. Workers at the SLF removed the orbiter from the back of the SCA in the Mate-Demate Device,and towed it into High Bay 3 of the VAB where on April 25 they completed attaching it to an ET and inert SRBs on a Mobile Launch Platform (MLP) repurposed from carrying Saturn rockets. These activities enabled verification of towing, assembly, and checkout procedures. Since the Apollo and Skylab programs, engineers had made many significant modifications to Launch Pads 39A and 39B to accommodate the space shuttle. Among these included the addition of a fixed launch tower, accommodations for payload handling, and a mobile service structure for access to the vehicle. Left: Enterprise exiting the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Middle: Enterprise on its Mobile Launch Platform during the rollout to the pad. Right: Enterprise at Launch Pad 39A. Rollout of Enterprise from the VAB to Launch Pad 39A occurred on May 1, and its arrival marked the first time that a vehicle stood on that facility since the Skylab 1 space station launch in May 1973. The assembled vehicle including the MLP weighed about 11 million pounds. Technicians drove the stack atop the Crawler Transporter at varying speeds to determine the optimum velocity to minimize vibration stress on the vehicle. The 3.5-mile rollout took about eight hours to complete. Once at the pad, engineers used Enterprise to conduct fit checks and to validate launch pad procedures. During the critical countdown demonstration test, workers filled the ET with super-cold liquid hydrogen and liquid oxygen. The significant discovery that ice built up at the top of the ET during this process led to the addition of the gaseous oxygen vent hood (familiarly known as the “beanie cap”) to the launch pad facility and a procedure to retract it just a few minutes before liftoff. This prevented the dangerous buildup of ice during the countdown and ranks as perhaps one of Enterprise’s greatest contributions as a test vehicle during its time at the launch pad. Left: Engineer Richard W. Nygren poses in front of Enterprise at Launch Pad 39A with astronauts Richard H. Truly, John W. Young, Robert L. Crippen, and Joe H. Engle, the prime and backup crews assigned to STS-1, the first space shuttle mission. Middle left: Pilot’s eye view of the launch tower looking up through Enterprise’s forward windows. Middle right: Enterprise rolls back into the Vehicle Assembly Building. Right: Enterprise departs NASA’s Kennedy Space Center in Florida atop the Shuttle Carrier Aircraft. On July 23, after three months of fit checks and testing, workers rolled Enterprise back from Launch Pad 39A to the VAB’s High Bay 1. The activities conducted at the pad proved instrumental in paving the way for its sister ship Columbia to make its first launch in 1981. John Bell, who managed the activities at KSC said of the test program, “Overall, it was a very successful venture and well worth it.” Launch Pad 39A Site Manager John J. “Tip” Talone added, “Having [Enterprise] out here really saved the program a lot of time in getting things ready for [Columbia].” In the VAB, workers removed Enterprise from its ET on July 25 and towed it to the SLF on Aug. 3 where it awaited the arrival of the SCA. The ferry flight back to Dryden took place Aug. 10-16, making six stops along the way – Atlanta, St. Louis, Tulsa, Denver, Salt Lake City, and Vandenberg AFB in California. Up to 750,000 people came out to see the orbiter and SCA. Back at Dryden, workers demated Enterprise and on Oct. 30 trucked it back to the Palmdale plant where engineers removed computers and instruments to be refurbished and used in other orbiters then under construction. Previous plans to convert Enterprise into an orbital vehicle proved too costly and NASA abandoned the idea. Left: Enterprise as the backdrop for President Ronald W. Reagan welcomes home the STS-4 crew at NASA’s Dryden, now Armstrong, Flight Research Center in July 1982. Middle: Enterprise on display at the World’s Fair in New Orleans in 1984. Right: Enterprise during static pad tests at Space Launch Complex-6 at Vandenberg Air Force, now Space Force, Base in 1985. With its major pathfinder tasks completed, and its future uncertain, NASA returned Enterprise to Dryden on Sep. 6, 1981, for long-term storage. On July 4, 1982, NASA used it as a backdrop for President Ronald W. Reagan to welcome home the STS-4 crew. The following year, NASA sent Enterprise on a ********* tour, departing Dryden on May 13, 1983, with stops in the ******* Kingdom, Germany, Italy, and France for the annual Paris Air Show. Enterprise made a stop in Ottawa, Canada, on its return trip to Dryden, arriving there June 13. Workers once again placed it in temporary storage. For its next public appearance, NASA placed it on display in the U.S. pavilion of the World’s Fair in New Orleans between April and November 1984. After the World’s Fair, NASA ferried Enterprise to Vandenberg AFB in California to conduct fit checks at the Space Launch Complex-6 (SLC-6), that NASA had planned to use for polar orbiting shuttle missions. NASA used Enterprise to conduct tests at SLC-6 similar to the 1979 tests at KSC’s Launch Complex 39. The tests at Vandenberg completed, NASA ferried Enterprise back to Dryden on May 24, 1985, but this time for only a short-term storage. On Sep. 20, 1985, NASA ferried Enterprise to KSC and placed it on temporary public display near the VAB, next to the Saturn V already displayed there. After two months on display at KSC, NASA flew Enterprise to Dulles International Airport in Chantilly, Virginia, arriving on Nov. 18. NASA officially retired Enterprise and transferred ownership to the Smithsonian Institution that had plans to build a large aircraft museum annex at the airport. The Smithsonian placed Enterprise in storage in a hangar, awaiting the completion of its new home. That turned into an 18-year wait. Left: Launch of STS-61A in October 1985, with Enterprise and the Saturn V in the foreground. Middle: Enterprise in long-term storage at Dulles International Airport in Chantilly, Virginia. Right: Enterprise during arresting barrier testing at Dulles. But even during that 18-year wait, NASA found practical use for the venerable Enterprise. In 1987, the agency studied how to handle an orbiter returning from space should it suffer a brake ********. To test the efficacy of an arresting barrier, workers at Dulles slowly winched Enterprise into a landing barrier to see if the vehicle suffered any damage. Later that same year, NASA used Enterprise to test various crew bailout procedures being developed in the wake of the Challenger accident. In 1990, experimenters used Enterprise’s cockpit windows to test mount an antenna for the Shuttle ******** Radio Experiment, with no other orbiters available. Periodically, engineers removed parts from Enterprise to test for materials durability, and evaluated the structural integrity of the vehicle including its payload bay doors and found it to be in sound condition even after years in storage. In April 2003, in the wake of the Columbia accident, investigators borrowed Enterprise’s left landing gear door and part of the port wing for foam impact tests. The tests provided solid evidence for the foam strike as the cause of the accident. Left: Space shuttle Enterprise undergoes restoration at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum (NASM) in Chantilly, Virginia. Note the missing wing leading edge, donated for the Columbia accident investigation. Right: Enterprise on display at the Hazy Center. Image credits: courtesy NASM. On Nov. 20, 2003, workers towed Enterprise from its storage facility into a newly completed display hangar at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum at Dulles. After specialists spent eight months restoring the orbiter, the museum placed it on public display on Dec. 15, 2004. Left: Space shuttle orbiters Enterprise, left, and Discovery meet nose-to-nose at the Stephen F. Udvar-Hazy Center of the Smithsonian Institution’s National Air and Space Museum in Chantilly, Virginia. Right: Actor Leonard Nimoy greets Enterprise at New York’s John F. Kennedy International Airport. In 2011, NASA retired the space shuttle fleet and donated the vehicles to various museums around the country. The Intrepid Sea, Air & Space Museum in New York City acquired Enterprise, and on Apr. 19, 2012, workers removed the orbiter from its display at the Hazy Center – replacing it with the orbiter Discovery – and placed it atop a SCA for the final time. Eight days later, after a short flight from Dulles, Enterprise landed at John F. Kennedy International Airport. Workers lifted the orbiter from the SCA and placed it on a barge. It eventually arrived at the Intrepid Museum on June 3 and went on public display July 19. Enterprise suffered minor damage during Superstorm Sandy in October 2012, but workers fully restored it. Enterprise in the Shuttle Pavilion at the Intrepid Sea, Air & Space Museum in New York City. Image credit: courtesy Intrepid Museum. Explore More 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander Article 2 days ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap Article 1 week ago 13 min read 15 Years Ago: STS-127 Delivers ********* External Platform to Space Station Article 1 week ago View the full article
  3. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4253-4254: Pit Stop for Contact Science This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4251 (2024-07-22 00:02:59 UTC Earth planning date: Monday, July 22, 2024 Last week we wrapped up activities at Fairview Dome and started heading south towards our next potential drill location in the Upper Gediz Vallis ridge campaign. We had about a 29-meter (about 95 feet) drive over the weekend, which set us up nicely for contact science and remote sensing today. Today’s two-sol plan includes APXS and MAHLI on a gray rock named “Discovery Pinnacle” to assess variations in bedrock chemistry and compare it to what we have seen recently. We also planned ChemCam LIBS on “Miguel Meadow” to evaluate the typical bedrock in our workspace, as seen in the above image from the front Hazcam. The plan also includes a Mastcam mosaic covering the large patch of light-toned rocks in front of the rover to look for variations in lithology. Two ChemCam long-distance RMIs are also planned to evaluate the stratigraphy exposed by a channel cut into the Gediz Vallis ridge ********, and to look more closely at a well-laminated dark-toned boulder on the channel floor. Then Curiosity will drive about 16 meters (about 52 feet) farther south, and will take post-drive imaging to help us evaluate another patch of light-toned bedrock in the next plan. In addition to targeted remote sensing, today’s plan includes observations of atmospheric opacity, searching for dust devils, an autonomously selected ChemCam AEGIS target, and standard DAN and REMS activities. We’re all curious to see what Wednesday’s workspace will hold as we start thinking about the next place to drill! Meanwhile, much of the science team is gathered in Pasadena, California, this week at the Tenth International Conference on Mars, sharing lots of exciting results from the mission thus far. Looking forward to what comes next! Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center Share Details Last Updated Jul 23, 2024 Related Terms Blogs Explore More 3 min read Sols 4250-4252: So Many Rocks, So Little Time Article 2 hours ago 2 min read Sols 4248-4249: Lunch at Fairview Dome Article 5 days ago 2 min read Sols 4246-4247: Next Stop: Fairview Dome Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  4. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4250-4252: So Many Rocks, So Little Time This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4248 – Martian day 4,248 of the Mars Science Laboratory mission – on July 19, 2024, at 02:34:33 UTC. Earth planning date: Friday, July 19, 2024 As usual with our weekend plans, we are packing a lot of science into today’s three-sol plan. I had the fun of planning a complex and large set of arm activities as the Arm Rover Planner today. Since we did not drive in Wednesday’s plan, we still are looking at targets in the same workspace – shown in the image with the arm down on a contact science target. We are finishing up the observations at our current location on “Fairview Dome.” In our first set of imaging, we begin with a Navcam dust ****** movie. Then, ChemCam is taking a LIBS observation on “Koip Peak” (a nodular bedrock) and an RMI mosaic on Texoli butte. We also have Mastcam imaging on Koip Peak, “Amphitheater Dome” (Wednesday’s contact science target), the channel wall, and the AEGIS target from sol 4247. After a nap, we’re ready for the arm. The arm work was challenging today, as we had a lot to do. We start by taking MAHLI images of a target named “Saddlebag Lake,” a bumpy, rough part of the bedrock. We then brush and take MAHLI images of “Eagle Scout Peak,” which is a dusty portion of the same bedrock. We are also running an experiment today to see if we can run the DRT brush in parallel with using our UHF antenna, to downlink data without impacting the data. After integrating with APXS on Eagle Scout Peak, we take nighttime MALHI imaging (using the LEDs) of the CheMin inlet to look for any signs of stuck sample and stow the arm. We are also cleaning out the sample from the CheMin instrument, by “dumping” it out and then running an analysis on the empty cell. The second sol begins with more atmospheric observations. We have another ChemCam LIBS observation of the “Smith Peak” target, which is a dark and dusty spot on the bedrock, and Mastcam mosaics of “Virginia Peak” (the gray edge of the rock), the summit of “Milestone Peak”, and “McDonald Pass” (a nearby piece of bedrock that looks similar to our recent drill target, “Whitebark Pass”). We’re then ready to drive. Today’s drive is taking us about 30 meters south (about 98 feet). We’re driving cross-slope, which is always a challenge because we have to account for sliding sideways, away from the planned path. Fortunately there are no major hazards in the area, so we can tolerate some deviation from our path. This drive should take us close to our next potential drill location! We’re also testing, for the first time on Mars, a new capability that helps the rover make more precise arc turns, which can reduce the amount of steering we need to do, and help preserve our wheels. After taking our normal post-drive imaging, our final activity on this sol is an APXS atmospheric observation. On our third sol, around noon, we are taking a ChemCam AEGIS observation and a lot of atmospheric observations, including another dust ****** survey and Mastcam solar tau. Finally, just before handing things over to Monday’s plan, we take additional atmospheric observations in the early morning. Written by Ashley Stroupe, Mission Operations Engineer at NASA’s Jet Propulsion Laboratory Share Details Last Updated Jul 23, 2024 Related Terms Blogs Explore More 2 min read Sols 4248-4249: Lunch at Fairview Dome Article 5 days ago 2 min read Sols 4246-4247: Next Stop: Fairview Dome Article 1 week ago 3 min read Sols 4243-4245: Exploring Stubblefield Canyon Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  5. 4 Min Read 10 Things for Mars 10 Both Shadow and Substance: The dramatic image of NASA’s Mars Exploration Rover Opportunity’s shadow was taken on sol 180 (July 26, 2004), by the rover’s front hazard-avoidance camera as the rover moved farther into Endurance Crater in the Meridiani Planum region of Mars. Credits: NASA/JPL Scientists from around the world are gathering this week in California to take stock of the state of science from Mars and discuss goals for the next steps in exploration of the Red Planet. In the spirit of Mars 10, formally known as the 10th International Conference on Mars, here are 10 recent significant events that got scientists talking: 1. An International Science Fleet at Mars July 2024: Nine spacecraft are now operating at Mars – two surface rovers and seven orbiters. NASA’s fleet includes the Perseverance and Curiosity rovers, and orbiters MAVEN, Mars Reconnaissance Orbiter, and Mars Odyssey. ESA (********* Space Agency) operates Mars Express and the ExoMars Trace Gas Orbiter. Both China and the ******* ***** Emirates also have spacecraft studying Mars from orbit. Mars Relay Network: Interplanetary Internet 2. Curiosity Discovers Mysterious Surge in Methane – Which Then Vanishes June 2019: NASA’s Curiosity Mars rover found a surprising result: the largest amount of methane ever measured during the mission. “The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.” “Curiosity’s Mars Methane Mystery Continues” 3. Curiosity Discovers Evidence of Ancient Wave Ripples From a Lake Bottom February 2023: NASA’s Curiosity rover team was surprised to discover the mission’s clearest evidence yet of ancient water ripples that formed within lakes in an area they expected to be much drier. “NASA’s Curiosity Finds Surprise Clues to Mars’ Watery Past” 4. InSight Detects First Quake on Another Planet April 2019: NASA’s Mars InSight lander measured and recorded for the first time ever a “marsquake.” “InSight’s first readings carry on the science that began with NASA’s Apollo missions,” said InSight Principal Investigator Bruce Banerdt. “We’ve been collecting background noise up until now, but this first event officially kicks off a new field: Martian seismology!” “NASA’s InSight Detects First Likely ‘Quake’ on Mars” 5. InSight Provides First View of Mars’ Deep Interior July 2021: NASA’s InSight spacecraft’s seismometer revealed details about the planet’s deep interior for the first time, including confirmation that the planet’s center is molten. “NASA’s InSight Reveals the Deep Interior of Mars” 6. InSight Finds Stunning Impact on Mars – and Ice October 2022: NASA’s InSight felt the ground shake during the impact while cameras aboard the Mars Reconnaissance Orbiter spotted the yawning new crater surrounded by boulder-sized chunks of ice from space. “NASA’s InSight Lander Detects Stunning Meteoroid Impact on Mars” 7. Opportunity Rover Comes to an End After Nearly 15 Years July 2021: One of the most successful and enduring feats of interplanetary exploration, NASA’s Opportunity rover mission ended after almost 15 years exploring the surface of Mars and helping lay the groundwork for NASA’s return to the Red Planet. “NASA’s Opportunity Rover Mission on Mars Comes to End” 8. Massive Dust Storm Spreads Across Mars July 2018: For scientists watching the Red Planet from NASA’s orbiters, summer 2018 was a windfall. “Global” dust storms, where a runaway series of storms create a dust cloud so large they envelop the planet, only appear every six to eight years (that’s 3-4 Mars years). In June 2018, one of these dust events rapidly engulfed the planet. Scientists first observed a smaller-scale dust storm on May 30. By June 20, it had gone global. “’Storm Chasers’ on Mars Searching for Dusty Secrets” 9. NASA Maps Water Ice on Mars for Use by Future Astronauts October 2023: The map could help the agency decide where the first astronauts to the Red Planet should land. The more available water, the less missions will need to bring. “NASA Is Locating Ice on Mars With This New Map” 10. Mars Reconnaissance Orbiter Images Used to Make Massive Interactive Globe of Mars April 2023: Cliffsides, impact craters, and dust ****** tracks are captured in mesmerizing detail in a new mosaic of the Red Planet composed of 110,000 images from NASA’s Mars Reconnaissance Orbiter (MRO). “New Interactive Mosaic Uses NASA Imagery to Show Mars in Vivid Detail” Read More The 10th Annual International Conference on Mars NASA’s Mars Exploration Science Goals NASA Mars Missions View the full article
  6. When designing a new spacecraft or exploration vehicle, there is intense focus on its technical performance. Do its systems perform as expected? What kind of power does it need? Will it safely reach its destination? Equally important, however, is whether that vehicle also works for the humans inside. Can astronauts easily reach critical controls? Do the seats conform to a crew member regardless of their height and body size? Does the layout of crew workstations, translation paths, stowage, and other items support effective working and living conditions? Those are just a few of the questions NASA’s Center for Design and Space Architecture (CDSA) seeks to answer. Based within the Human Health and Performance Directorate at Johnson Space Center in Houston, the CDSA is NASA’s conceptual, human-centered design studio. It creates advanced concepts for spacecraft, exploration vehicles, and habitats that put crew needs first. The team provides a full spectrum of design services, from concept sketches to CAD models, to scaled mockups and virtual reality (VR), to full-size prototype fabrication. Carl Conlee, Evan Twyford, and Dr. Robert Howard perform a window node visibility study on the mockup of the Space Exploration Vehicle. NASA The CDSA has been an integral partner in the design of everything from dining tables for the International Space Station to ergonomic seats for the Orion spacecraft, and private sleeping bunks for the Space Exploration Vehicle (also known as the Small Pressurized Rover). The multidisciplinary team also played key roles in the design and construction of analog habitats onsite at Johnson, including the Human Exploration Research Analog (HERA) and the Crew Health And Performance Exploration Analog (CHAPEA) habitats where volunteer crews recently completed simulated Mars missions. Dr. Robert Howard, CDSA co-lead and habitability domain lead, explained that the current HERA habitat was initially developed as the ground-test version of a lunar habitat envisioned by the Constellation Program. The CDSA team built medical operations and suit maintenance workstations, stowage systems, cameras, and outfitting supplies for the habitat, known then as the Habitat Demonstration Unit. Later, the team added a galley, exercise and stowage space, and crew quarters to university-built inflatable upper decks. They also outfitted the interior of a hygiene module provided by the Jet Propulsion Laboratory, helped Kennedy Space Center’s plant growth team locate their experiments in the habitat, and worked with the Human Factors Engineering Laboratory to develop crew procedures for testing the habitats at Johnson and in Arizona. “The plan was to excess the habitat when the program ended, but CDSA realized the asset was too valuable and we campaigned to find a new owner for the mockup,” Howard said. “That led to the birth of HERA. The Human Research Program now performs the day-to-day maintenance and conducts the HERA missions.” Dr. Robert Howard (left) briefs Apollo astronauts Gene Cernan, Neil Armstrong, and Harrison Schmitt on the Altair lunar lander mockup. NASA For CHAPEA, the CDSA worked with NASA teams and commercial partners to determine the habitat’s necessary functions and layout, assisted with furniture installation, provided design consultation and fabrication assistance for an external airlock, and designed and built a docking node. Another part of the CDSA’s work is the development of NASA test units for partner-produced vehicles and spacecraft. “In the early phases of a project, these test units can help NASA understand what requirements we want to levy on the partner,” Howard explained. “Later, they can be used to emulate partner concepts and NASA can perform independent studies with them, either to assess partner capabilities or to predict the impacts of possible changes.” The CDSA team can also build replicas of contractor mockups for crew training or additional testing. They are currently supporting development of lunar surface logistics, a pressurized rover, and Gateway components, too. Center for Design and Space Architecture team members test a Gateway habitat mockup. From left are Brett Montoya, Taylor Phillips-Hungerford, and Zachary Taylor. NASA/Robert Markowitz In addition to Howard, the CDSA team includes Maijinn Chen, the technical discipline lead for space architecture, and Nathan Moore, the technical discipline lead for fabrication, as well as nearly a dozen contractors who serve as space architects, industrial designers, mechanical engineers, and VR developers. “It is a very multidisciplinary team, so we are able to leverage different skillsets to complete our work,” Howard said. “All of the team members are well-versed in design ideation, so we can collaborate when developing concepts, whether for high-level architectures, individual vehicle assets, subsystem components, or even crew-worn items.” Howard explained that the CDSA almost always works as a sub-team within a larger effort. “We can support a team at any point in a spacecraft lifecycle, but it is best when we are brought in at the very beginning,” he said. “That is where human-centered design processes can have the greatest impact in improving a space system for the lowest cost. It is also very helpful in ensuring that the requirements levied on our contractors and international partners reflect the needs of the future astronaut crews.” Howard can trace his passion for space exploration back to his early childhood. “I feel like I was born interested! My mom said when I was three, I might not watch ‘The Electric Company,’ but I would not miss ‘Star Trek’ or ‘Space 1999,” he said. “As I got older, I would gravitate toward the space section of the library and read anything I could about NASA. I was always more interested in human spaceflight than in unmanned vehicles and I suppose that was the beginning of my path towards habitability and human-centered design.” For Howard, the most rewarding part of the CDSA team’s work is creating things that have never existed. “I love it when we find a way to do something that was previously considered impossible, or beyond the scope of what was considered likely,” he said. “I consider it a personal calling to find ways to make space more habitable for humanity.” View the full article
  7. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut Kate Rubins uses a hammer to get a drive tube into the ground to collect a pristine soil sample during a nighttime simulated moonwalk in the San Francisco Volcanic Field in Northern Arizona on May 16, 2024. Surviving and operating through the lunar night was identified as a top-ranked 2024 Civil Space Challenge, and tests such as these help NASA astronauts and engineers practice end-to-end lunar operations. NASA/Josh Valcarcel This spring, NASA published a document overviewing almost 200 technology areas requiring further development to meet future exploration, science, and other mission needs – and asked the aerospace community to rate their importance. The goal was to better integrate the community’s most pervasive technical challenges, or shortfalls, to help guide NASA’s space technology development and investments. Today, NASA’s Space Technology Mission Directorate (STMD) released the 2024 Civil Space Shortfall Ranking document, integrating inputs from NASA mission directorates and centers, small and large industry organizations, government agencies, academia, and other interested individuals. STMD will use the inaugural list and annual updates as one of many factors to guide its technology development projects and investments. “Identifying consensus among challenges across the aerospace industry will help us find solutions, together,” said NASA Associate Administrator Jim Free. “This is the groundwork for strengthening the nation’s technological capabilities to pave the way for new discoveries, economic opportunities, and scientific breakthroughs that benefit humanity.” The integrated results show strong stakeholder agreement among the 30 most important shortfalls. At the top of the list is surviving and operating through the lunar night, when significant and sustained temperature drops make it difficult to run science experiments, rovers, habitats, and more. Solution technologies could include new power, thermal management, and motor systems. Second and third on the integrated list are the need for high-power energy generation on the Moon and Mars and high-performance spaceflight computing. The inputs received are already igniting meaningful conversations to help us and our stakeholders make smarter decisions. We will refine the process and results annually to ensure we maintain a useful approach and tool that fosters resilience in our space technology endeavors.” Michelle Munk Acting Chief Architect for STMD Highly rated capability areas in the top 20 included advanced habitation systems, autonomous systems and robotics, communications and navigation, power, avionics, and nuclear propulsion. Beyond the top quartile, stakeholder shortfall scores varied, likely aligning with their interests and expertise. With many shortfalls being interdependent, it emphasizes the need to make strategic investments across many areas to maintain U.S. leadership in space technology and drive economic growth. STMD is evaluating its current technology development efforts against the integrated list to identify potential adjustments within its portfolio. “This effort is an excellent example of our directorates working together to assess future architecture needs that will enable exploration and science for decades to come,” said Nujoud Merancy, deputy associate administrator for the Strategy and Architecture Office within NASA’s Exploration Systems Development Mission Directorate. The 2024 results are based on 1,231 total responses, including 769 internal and 462 external responses. Twenty were consolidated responses, representing multiple individuals from the same organization. Once average shortfall scores were calculated for each organization, STMD grouped, totaled, and averaged scores for nine stakeholder groups and then applied pre-determined weights to each to create the overall ranking. In the document, NASA also published the ranked results for each stakeholder group based on the 2024 feedback. The rankings are based on the numerical scores received and not responses to the open-ended questions. NASA anticipates the qualitative feedback will uncover additional insights and more. NASA will host a webinar to overview the ranking process and results on July 26, 2024, at 2 p.m. EDT. Register for the Stakeholder Webinar “Communicating our most pressing technology challenges is a great way to tap into the abilities across all communities to provide solutions to critical problems,” said Dr. Carolyn Mercer, chief technologist for NASA’s Science Mission Directorate. To learn more about the inaugural civil space shortfall feedback opportunity and results as well as monitor future feedback opportunities, visit: www.nasa.gov/civilspaceshortfalls View the full article
  8. Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. Leadership from NASA and Boeing will participate in a media teleconference at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test mission aboard the International Space Station. Audio of the media teleconference will stream live on the agency’s website: [Hidden Content] Participants include: Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour prior to the start of the call at ksc*****@*****.tld. A copy of NASA’s media accreditation policy is online. Engineering teams with NASA and Boeing recently completed ground hot ***** testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved ******* the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit ***** that will position the spacecraft for a landing in the southwestern ******* States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the call. NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a ******* Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed. As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with ********* private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. For NASA’s blog and more information about the mission, visit: [Hidden Content] -end- Josh Finch / Jimi Russell Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p*****@*****.tld / *****@*****.tld / *****@*****.tld Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 *****@*****.tld / sandra.p*****@*****.tld View the full article
  9. 3 Min Read NASA Sponsors New Research on Orbital Debris, Lunar Sustainability From lunar orbit, astronauts pointed cameras out the window of their spacecraft to capture photos of the moon's surface. Credits: NASA As part of NASA’s commitment to foster responsible exploration of the universe for the benefit of humanity, the Office of Technology, Policy, and Strategy (OTPS) is funding space sustainability research proposals from five university-based teams to analyze critical economic, social, and policy issues related to Earth’s orbit and cislunar space. The new research awards reflect the agency’s commitment identified in NASA’s Space Sustainability Strategy to ensure safe, peaceful, and responsible space exploration for future generations, and encourage sustainable behaviors in cislunar space and on the lunar surface by ensuring that current operations do not impact those yet to come. Three of the five awards will fund research that addresses the growing problem of orbital debris, human-made objects in Earth’s orbit that no longer serve a purpose. This debris can endanger spacecraft, jeopardize access to space, and impede the development of a low-Earth orbit economy. The remaining two awards focus on lunar surface sustainability and will address key policy questions such as the protection of valuable locations and human heritage sites as well as other technical, economic, or cultural considerations that may factor into mission planning. “The sustainable use of space is critical to current and future space exploration,” said Ellen Gertsen, deputy associate administrator for the Office of Technology, Policy, and Strategy (OTPS) at NASA Headquarters in Washington. “Mitigating the risks of orbital debris and ensuring future generations can utilize the lunar surface are of paramount importance. These awards will fund research to help us understand the economics, the policy considerations, and the social elements of sustainability, generating new tools and evidence so we can make better-informed decisions.” A panel of NASA experts selected the following proposals, awarding a total of about $550,000 to fund them: Lunar surface sustainability “A RAD Framework for the Moon: Applying Resist-Accept-Direct Decision-Making,” submitted by Dr. Caitlin Ahrens of the University of Maryland, College Park “Synthesizing Frameworks of Sustainability for Futures on the Moon,” submitted by research scientist Afreen Siddiqi of Massachusetts Institute of Technology Orbital Debris and Space Sustainability “Integrated Economic-Debris Modeling of Active Debris Removal to Inform Space Sustainability and Policy,” submitted by researcher Mark Moretto of the University of Colorado, Boulder “Avoiding the Kessler Syndrome Through Policy Intervention,” submitted by aeronautics and astronautics researcher Richard Linares of the Massachusetts Institute of Technology “Analysis of Cislunar Space Environment Scenarios, Enabling Deterrence and Incentive-Based Policy,” submitted by mechanical and aerospace engineering researcher Ryne Beeson of Princeton University Share Details Last Updated Jul 23, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
  10. NASA Astronaut Eileen Collins, STS-93 commander, looks through a checklist on the space shuttle Columbia’s middeck in this July 1999 image. Collins was the first female shuttle commander. Collins graduated in 1979 from Air Force Undergraduate Pilot Training at Vance AFB, Oklahoma, where she was a T-38 instructor pilot until 1982. She continued her career as an instructor pilot of different aircraft until 1989. She was selected for the astronaut program while attending the Air Force Test Pilot School at Edwards AFB, California, which she graduated from in 1990. Collins became an astronaut in 1991 and over the course of four spaceflights, logged over 872 hours in space. She retired from NASA in May 2006. Image credit: NASA View the full article
  11. 5 Min Read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity By Rick Smith “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future. Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of ****** holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos. Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive ****** holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.” Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since. “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.” That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts. But in the early 1990s, as NASA ***** plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing. The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year *******. “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988. “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.” Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope. On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.” Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment. “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways. Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago. An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said. Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.” “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.” As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next. Learn more about the Chandra X-ray Observatory and its mission here: [Hidden Content] [Hidden Content] Media Contact: Jonathan Deal / Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 jonathan.e*****@*****.tld / lane.e*****@*****.tld View the full article
  12. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The cockpit of an old MD-90 aircraft arrived at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024. Parts will be used to build a simulator for NASA’s X-66, the demonstration aircraft for the Sustainable Flight Demonstrator project.NASA/Steve Freeman NASA’s X-66 aircraft, the centerpiece of its Sustainable Flight Demonstrator project, is taking the term “sustainable” to heart by reusing an old MD-90 cockpit as a base for its new X-66 simulator. When airplanes are retired, they often wind up in “boneyards” — storage fields where they spend years being picked over for parts by manufacturers, researchers, engineers, and designers. That’s where the X-66 team found their new X-66 simulator cockpit, before sending it to NASA’s Armstrong Flight Research Center in Edwards, California. The project will catalog, clean, and disassemble the MD-90 cockpit to use for the simulator. This is where the Simulation Engineering Branch at NASA Armstrong steps in. The team develops high-fidelity engineering simulators that allow pilots and engineers to run real-life scenarios in a safe environment. The cockpit of an old MD-90 aircraft arrived at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024. Parts will be used to build a simulator for NASA’s X-66, the demonstration aircraft for the Sustainable Flight Demonstrator project.NASA/Steve Freeman As with any X-plane, a simulator allows researchers to test unknowns without risking the pilot’s safety or the aircraft’s structural integrity. A simulator also affords the team the ability to work out design challenges during the build of the aircraft, ensuring that the final product is as efficient as possible. To assemble the X-66, the project team will use the airframe from another MD-90, shortening it, installing new engines, and replacing the wing assemblies with a truss-braced wing design. The Sustainable Flight Demonstrator project is NASA’s effort to develop more efficient airframes as the nation moves toward sustainable aviation. In addition to the X-66’s revolutionary wing design, the project team will work with industry, academia, and other government organizations to identify, select, and mature sustainable airframe technologies. The project seeks to inform the next generation of single-aisle airliner, the workhorse of commercial aviation fleets around the world. Boeing and NASA are partnering to develop the experimental demonstrator aircraft. Share Details Last Updated Jul 18, 2024 Related TermsAeronauticsArmstrong Flight Research CenterFlight InnovationGreen Aviation TechNASA AircraftSustainable Flight Demonstrator Explore More 7 min read LIVE: NASA is with you from Oshkosh Article 3 hours ago 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024 Article 4 days ago 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 2 weeks ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Sustainable Flight Demonstrator Project Green Aviation Tech Armstrong Capabilities & Facilities View the full article
  13. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range. Courtesy Patrick J. Hendrickson; used with permission A rocket-propelled target is scheduled for launch July 27-28, 2024 from NASA’s launch range at the Wallops Flight Facility in Virginia in support of a U.S. Navy Fleet Training exercise. No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The rocket launch may be visible from the Chesapeake Bay region. Share Details Last Updated Jul 19, 2024 EditorAmy BarraContactAmy Barra*****@*****.tldLocationWallops Flight Facility Related TermsWallops Flight Facility Explore More 4 min read Wallops Missions, Programs and Projects Article 9 years ago 1 min read Field Carrier Landing Practice at Wallops Article 6 years ago 1 min read Wallops Range Supports First Rocket Lab HASTE Launch Rocket Lab launched its first-ever Hypersonic Accelerator Suborbital Test Electron, or HASTE, launch vehicle from… Article 1 year ago View the full article
  14. 5 Min Read Watch Carbon Dioxide Move Through Earth’s Atmosphere Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Credits: NASA’s Scientific Visualization Studio Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers What we’re looking at: This global map shows concentrations of carbon dioxide as the gas moved through Earth’s atmosphere from January through March 2020, driven by wind patterns and atmospheric circulation. Because of the model’s high resolution, you can zoom in and see carbon dioxide emissions rising from power plants, fires, and cities, then spreading across continents and oceans. Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Download this visualization from NASA’s Scientific Visualization Studio: [Hidden Content] Credits: NASA’s Scientific Visualization Studio “As policymakers and as scientists, we’re trying to account for where carbon comes from and how that impacts the planet,” said climate scientist Lesley Ott at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “You see here how everything is interconnected by these different weather patterns.” You see here how everything is interconnected by these different weather patterns. Lesley Ott NASA Climate scientist What are the sources of CO2? Over China, the ******* States, and South Asia, the majority of emissions came from power plants, industrial facilities, and cars and trucks, Ott said. Meanwhile, in ******* and South America, emissions largely stemmed from fires, especially those related to land management, controlled agricultural burns and deforestation, along with the burning of oil and coal. Fires release carbon dioxide as they *****. Why does the map look like it’s pulsing? Global CO2 ppm for January-March of 2020. This camera move zooms in on the eastern ******* States. Download this visualization from NASA’s Scientific Visualization Studio: [Hidden Content] Credits: NASA’s Scientific Visualization Studio There are two primary reasons for the pulsing: First, fires have a clear day-night cycle. They typically flare up during the day and **** down at night. Second, you’re seeing the absorption and release of carbon dioxide as trees and plants photosynthesize. Earth’s land and oceans absorb about 50% of carbon dioxide; these are natural carbon sinks. Plants take up carbon dioxide during the day as they photosynthesize and then release it at night through respiration. Notice that much of the pulsing occurred in regions with lots of trees, like mid- or high-latitude forests. And because the data were taken during the Southern Hemisphere summer, you see more pulsing in the tropics and South America, where it was the active growing season. Some of the pulsing also comes from the planetary boundary layer — the lowest 3,000 feet (900 meters) of the atmosphere — which rises as the Earth’s surface is heated by sunlight during the day, then falls as it cools at night. The data that drives it: The map was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather model, powered by supercomputers, that is used to simulate what was happening in the atmosphere — including storm systems, cloud formations, and other natural events. GEOS pulls in billions of data points from ground observations and satellite instruments, such as the Terra satellite’s MODIS and the Suomi-NPP satellite’s VIIRS instruments. Its resolution is more than 100 times greater than a typical weather model. Ott and other climate scientists wanted to know what GEOS would show if it was used to model the movement and density of carbon dioxide in the global atmosphere. “We had this opportunity to say: can we tag along and see what really high-resolution CO2 looks like?” Ott said. “We had a feeling we were going to see plume structures and things that we’ve never been able to see when we do these coarser resolution simulations.” Her instinct was right. “Just seeing how persistent the plumes were and the interaction of the plumes with weather systems, it was tremendous.” Why it matters: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/ Katie Jepson We can’t tackle climate change without confronting the fact that we’re emitting massive amounts of CO2, and it’s warming the atmosphere, Ott said. Carbon dioxide is a heat-trapping greenhouse gas and the primary reason for Earth’s rising temperatures. As CO2 builds in the atmosphere, it warms our planet. This is clear in the numbers. 2023 was the hottest year on record, according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York. Most of the 10 hottest years on record have occurred in the past decade. All this carbon dioxide isn’t harmful to air quality. In fact, we need some carbon dioxide to keep the planet warm enough for life to exist. But when too much CO2 is pumped into the atmosphere, the Earth warms too much and too fast. That’s what has been happening for at least the past half century. The concentration of carbon dioxide in the atmosphere increased from approximately 278 parts per million in 1750, the beginning of the industrial era, to 427 parts per million in May 2024. Read More: Emissions from Fossil Fuels Continue to Rise Human activities have “unequivocally caused warming,” according to the latest report by the Intergovernmental Panel on Climate Change. This warming is leading to all sorts of changes to our climate, including more intense storms, wildfires, heat waves, and rising sea levels. Inside the SVS studio: Carbon dioxide exists everywhere in the atmosphere, and the challenge for AJ Christensen, a senior visualization designer at NASA’s Goddard Space Flight Center, was to show the differences in density of this invisible gas. “We didn’t want people to get the impression that there was no carbon dioxide in these sparser regions,” Christensen said. “But we also wanted to really highlight the dense regions because that’s the interesting feature of the data. We were trying to show that there’s a lot of density over New York and Beijing.” Data visualizations help people understand how Earth’s systems work, and they can help scientists find patterns in massive datasets, Ott said. “What’s happening is you’re stitching together this very complex array of models to make use of the different satellite data, and that’s helping us fill in this broad puzzle of all the processes that control carbon dioxide,” Ott said. “The hope is that if we understand greenhouse gases really well today, we’ll be able to build models that better predict them over the next decades or even centuries.” For more information and data on greenhouse gases, visit the U.S. Greenhouse Gas Center. About the Author Jenny Marder Share Details Last Updated Jul 23, 2024 Location Goddard Space Flight Center Related Terms Climate Change Earth Earth’s Atmosphere Greenhouse Gases Explore More 3 min read Registration Opens for the 2024 NASA International Space Apps Challenge NASA invites innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space… Article 5 days ago 4 min read NASA Celebrates 20 Years of Earth-Observing Aura Satellite A few of the many highlights from the last 20 years since Aura Launched. Article 7 days ago 5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere Article 4 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  15. NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August. Read more about some of the research making the journey to the orbiting laboratory: Testing materials for packed systems Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles. Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems. Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Giving science a whirl STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students. NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.NASA More, better stem cells In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood *********, autoimmune disorders, and cancers. The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck. Someone in the ******* States is diagnosed with a blood ******* such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells. “Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck. NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.NASA DNA repair in space Rotifer-B2, an ESA (********* Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station. “Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth. A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.NASA Growing liver tissue Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs. “We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.” Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.Wake Forest Institute for Regenerative Medicine. This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions. Melissa Gaskill International Space Station Research Communications Team NASA’s Johnson Space Center Download high-resolution photos and videos of the research mentioned in this article. Search this database of scientific experiments to learn more about those mentioned in this article. Keep Exploring Discover More Topics From NASA Latest News from Space Station Research Commercial Resupply Station Science 101: Biology and Biotechnology Space Station Technology Demonstration View the full article
  16. A NASA camera on the Deep Space Climate Observatory satellite captures a view of the entire sunlit side of Earth from one million miles away.Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected SpaceX (Space Exploration Technologies Corporation) to provide launch services for NOAA’s JPSS-4 mission. The spacecraft is part of the multi-satellite cooperative ****** Polar Satellite System (JPSS) program, a partnership between NASA and NOAA. This mission is the next satellite in the program, which began with the Suomi National Polar-orbiting Partnership. This is a firm fixed price contract with a value of approximately $112.7 million, which includes launch services and other mission related costs. The JPSS-4 mission currently is targeted to launch in 2027, on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The JPSS constellation of satellites collects global multi-spectral radiometry and other specialized meteorologic, oceanographic, and solar-geophysical data via remote sensing of land, sea, and atmospheric properties. These data support NOAA’s mission for continuous observation of Earth’s environment to understand and predict changes in weather, climate, oceans, and coasts to support the nation’s economy and protect lives and property. NASA uses the instruments aboard the JPSS satellites to continue decades of Earth science research for the betterment of humanity. When launched, JPSS-4, will carry the NASA Earth Venture mission Libera, an instrument that will improve our understanding of trends in Earth’s energy imbalance and our changing climate. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch services. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the JPSS Flight Projects Office, which oversees the acquisition of the JPSS series instruments and spacecraft. A collaborative NOAA and NASA team manages the JPSS Program. For more information about NASA programs and missions, visit: [Hidden Content] -end- Tiernan Doyle Headquarters, Washington 202-358-1600 *****@*****.tld Patti Bielling Kennedy Space Center, Florida 321-501-7575 *****@*****.tld Share Details Last Updated Jul 22, 2024 LocationNASA Headquarters Related Terms****** Polar Satellite System (JPSS)****** Agency Satellite DivisionNOAA (National Oceanic and Atmospheric Administration)Science Mission Directorate View the full article
  17. A timelapse of the Twin Rockets to Investigate Cusp Electrodynamics (TRICE-2) mission launching from Andøya Space Center in Andenes, Norway on Dec. 8, 2018. NASA/Jamie Adkins When it comes to discoveries about our upper atmosphere, it pays to know your surroundings. Using data from the Twin Rockets to Investigate Cusp Electrodynamics (TRICE-2) rocket launch, NASA scientist Francesca Di Mare and Gregory Howes from the University of Iowa studied waves traveling down Earth’s magnetic field lines into the polar atmosphere. These waves were known to accelerate electrons, which pick up speed as they “surf” along the electric field of the wave. But their effect on ions — a more heterogenous group of positively charged particles, which exist alongside electrons — was unknown. By estimating the ion mixture they were flying through — predominantly protons and singly-charged oxygen ions — the scientists discovered that these waves were accelerating protons as they circle about the Earth’s magnetic field lines as well as electrons as they surf the waves. The findings reveal a new way our upper atmosphere is energized. Read more about the new results in Physical Review Letters. View the full article
  18. The barred spiral galaxy NGC 6872 is interacting with a smaller galaxy to the upper left. The smaller galaxy has likely stripped gas from NGC 6872 to feed the supermassive ****** ***** in its center.X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major To commemorate the 25th anniversary of NASA’s Chandra X-ray Observatory launch, the Chandra team released this never-seen-before image of NGC 6872, a spiral galaxy in the Pavo (Peacock) constellation, on July 22, 2024. This image and 24 others, which all include data from Chandra, demonstrate how X-ray astronomy explores all corners of the universe. NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy; in 2013, astronomers from the ******* States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from NASA’s Galaxy Evolution Explorer. This record was surpassed by NGC 262, a galaxy that measures 1.3 million light-years in diameter. See more photos released for this celebration. Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major View the full article
  19. Since it began in 2020, NASA’s Citizen Science Seed Funding Program (CSSFP) has helped twenty-four new NASA citizen science projects get off the ground. This one-year funding opportunity aims to expand the pool of professional scientists who use citizen science techniques in their science investigations. We’d like to remind you about two key changes to the CSSFP program this year! First, we heard that researchers could make better use of seed funding if it arrived in time to enable work during the summer — a crucial season for students, faculty, and interns. To address this need, NASA is shifting the submission and review process to earlier in the year. The planning start date for CSSFP investigations for this next round is now May 1, 2025! Of course, an earlier start date means an earlier due date, so this year’s CSSFP proposals will be due November 19, 2024. Proposers are also asked to submit a Notice of Intent (optional) by October 1, 2024 to aid in planning the review panels. Second, if you are a current CSSFP grant recipient, you have the opportunity to request a No Cost Extension, which will allow you to continue spending your remaining funding during a second year. However, please note: the NASA Shared Services Center will ******* late requests! All no-cost extension requests must be received more than 10 calendar days prior to the end date of your grant’s ******* of performance. Please check that date and be sure to submit your No Cost Extension requests more than 10 days prior. We’re excited to receive your proposals and can’t wait to help you do NASA science with fantastic volunteers from around the world! Previous Awards 2023 CSSFP Awards 2022 CSSFP Awards 2021 CSSFP Awards NASA’s Citizen Science Seed Funding Program can help your project grow–like the seedlings in NASA’s Growing Beyond Earth Citizen Science project! Credit: Growing Beyond Earth Share Details Last Updated Jul 22, 2024 Related Terms Biological & Physical Sciences Citizen Science Space Biology Explore More 1 min read NASA Science Activation Teams Present at National Rural STEM Summit Article 2 weeks ago 3 min read NASA Selects 5 Proposals to Conduct Research Using Openly Available Data in the Physical Sciences Informatics System Article 3 weeks ago 2 min read Happy Birthday, Redshift Wrangler! Article 1 month ago View the full article
  20. NASA/SAO/CXC This montage contains 25 new images with data from NASA’s Chandra X-ray Observatory that is being released to commemorate the telescope’s 25th anniversary in space, as described in our latest press release. Since its launch into space on July 23, 1999, Chandra has been NASA’s flagship mission for X-ray astronomy in its fleet of “Great Observatories.” Chandra discovers exotic new phenomena and examines old mysteries, looking at objects within our own Solar System out to nearly the edge of the observable Universe. There is a broad range of astronomical objects in this collection. At the center is one of Chandra’s most iconic targets, the supernova remnant Cassiopeia A (Cas A). This was one of the very first objects observed by Chandra after its launch in 1999, and astronomers have often returned to observe Cas A with Chandra since then. Chandra quickly discovered a point source of X-rays in Cas A’s center for the first time, later confirmed to be a neutron star. Later Chandra was used to discover evidence for a “superfluid” inside Cas A’s neutron star, to reveal that the original massive star may have turned inside out as it exploded, and to take an important step in pinpointing how giant stars explode. The Cassiopeia A supernova remnant has been observed for more than 2 million seconds since the start of the Chandra mission in 1999. X-rays from Chandra (blue); infrared from Webb (orange, white, and blue)X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (UGent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Major, J. Schmidt and K. Arcand The unmatched sharpness of Chandra’s X-ray images are perfect for studying the hot debris and energetic particles remaining behind after supernova explosions. Other examples in this new collection include the Crab Nebula, G21.5-0.9, MSH 15-52, and SN 1987A. Chandra also probes the different branches of stellar evolution such as “planetary nebulas” when stars like the Sun run out of fuel and shed their outer layers as seen in the Chandra image of HB 5. Chandra also looks at what happens at the start of the stellar life cycle, providing information about some of the youngest and most massive stars. Images of these stellar nurseries in the “25 for 25” montage include the Orion Nebula, Cat’s Paw, M16 (a.k.a., the “Pillars of Creation”), the Bat Shadow and NGC 3324. A view of a more mature star cluster, NGC 3532, is also included. X-ray data are particularly useful for studying objects like this because young stars are often copious producers of X-rays, allowing stars that are members of clusters to be picked out of a foreground or background of older objects. Chandra’s sharp images and sensitivity also allow many more sources to be seen. This region of star formation contains the Pillars of Creation, which was made famous by the Hubble Space Telescope. Chandra detects X-rays from young stars in the region, including one embedded in a pillar. X-rays from Chandra (red and blue); infrared image from Webb (red, green, and blue)X-ray: NASA/CXO/SAO; Infrared: NASA/ESA/CSA/STScI; Image processing: NASA/CXC/SAO/L. Frattare Chandra observes galaxies — including our own Milky Way, where a supermassive ****** ***** resides at its center. Chandra also studies other galaxies and this is represented in the new images of NGC 7469, Centaurus A, NGC 6872, NGC 1365, and Arp 220. Astronomers look at even larger structures like galaxy clusters with Chandra, where hundreds or thousands of galaxies are immersed in multimillion-degree gas that only an X-ray telescope can detect. In this release of images, M86 and the Virgo cluster, Abell 2125, and MACS J0035 are examples of galaxy clusters Chandra has observed. Closer to home, Chandra has contributed to the study of planets and comets in our own Solar System including Venus, Mars, Saturn, and even Earth itself. This ability to explore the Solar System is represented by the image of aurora on Jupiter, captured in X-rays, in this collection. A full list of the 25 images celebrating Chandra’s 25th, along with the data included and what the colors represent, is available at [Hidden Content]. Images of some of these objects had previously been released, but now include new X-ray data or have been combined with different data from other telescopes. Some of these objects have never been released before with Chandra data. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: [Hidden Content] Visual Description: This image shows a collection of 25 new space images celebrating the Chandra X-ray Observatory’s 25th anniversary. The images are arranged in a grid, displayed as five images across in five separate rows. Starting from the upper left, and going across each row, the objects imaged are: Crab Nebula, Orion Nebula, The Eyes Galaxies, Cat’s Paw Nebula, Milky Way’s Galactic Center, M16, Bat Shadow, NGC 7469, Virgo Cluster, WR 124, G21.5-0.9, Centaurus A, Cassiopeia A, NGC 3532, NGC 6872, Hb 5, Abell 2125, NGC 3324, NGC 1365, MSH 15-52, Arp 220, Jupiter, NGC 1850, MACS J0035, SN 1987A. View the full article
  21. New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South *******, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background NASA’s LEGS can do more than help Earthlings move about the planet. Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign. NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery. Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission. To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway. The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.” The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system. An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations. How it Works As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries. The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations. LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band. The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna. The LEGS-2 antenna will be in Matjiesfontein, South *******, located near Cape Town. In partnership with SANSA, the South ******** National Space Agency, NASA chose this location to maximize coverage to the Moon. South ******* was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia. These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign. The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. About the AuthorKendall MurphyTechnical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology. 5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share Details Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related TermsArtemisCommunicating and Navigating with MissionsGoddard Space Flight CenterSpace Communications & Navigation ProgramSpace Communications Technology Explore More 2 min read Working in Tandem: NASA’s Networks Empower Artemis I Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center… Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and ********* Space… Article 12 months ago View the full article
  22. 5 Min Read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander Astronauts Eileen M. Collins, mission commander and Jeffrey S. Ashby, pilot, peruse checklists on Columbia's middeck during the STS-93 mission. Credits: NASA At the end of February 1998, Johnson Space Center Deputy Director James D. Wetherbee called Astronaut Eileen Collins to his office in Building 1. He told her she had been assigned to command STS-93 and went with her to speak with Center Director George W.S. Abbey who informed her that she would be going to the White House the following week. Selecting a female commander to fly in space was a monumental decision, something the space agency recognized when they alerted the president of the ******* States. First Lady Hillary Clinton wanted to publicly announce the flight to the ********* people along with her husband President William J. Clinton and NASA Administrator Daniel S. Goldin. President William Jefferson Clinton and First Lady Hillary Rodham Clinton with Eileen Collins in the Oval Office.Sharon Farmer and White House Photograph Office At that event, on March 5, 1998, the First Lady noted what a change it would be to have a female in the commander’s seat. Referencing Neil A. Armstrong’s first words on the Moon, Clinton proclaimed, “Collins will take one big step forward for women and one giant leap for humanity.” Collins, a military test pilot and shuttle astronaut, was about to break one of the last remaining barriers for women at NASA by being assigned a position previously filled by men only. Clinton went on to reflect on her own experience with the space agency when she explained how in 1962, at the age of 14, she had written to NASA and asked about the qualifications to become an astronaut. NASA responded that women were not being considered to fly space missions. “Well, times have certainly changed,” she said wryly. Eileen Collins’ assignment as the first female shuttle commander was front page news in the March 13, 1998 issue of Johnson Space Center’s Space News Roundup.NASA The same year Hillary Clinton inquired about the astronaut corps, a special subcommittee of the U.S. House of Representatives Committee on Science and Astronautics held hearings on the issue of ******* discrimination in the selection of astronauts. Astronaut John H. Glenn, who had flown that February in 1962, justified women’s exclusion from the corps. “I think this gets back to the way our social order is organized really. It is just a fact. The men go off and ****** the wars and fly the airplanes and come back and help design and build and test them. The fact that women are not in this field is a fact of our social order. It may be undesirable.” Attitudes about women’s place in society, not just at NASA, were stubbornly hard to break. It would be 16 years before the agency selected its first class of astronauts that included women. Astronaut Eileen M. Collins looks over a checklist at the commander’s station on the forward flight deck of the space shuttle Columbia on July 23, 1999, the first day of the mission. The most important event of this day was the deployment of the Chandra X-Ray Observatory.NASA By 1998, views about women’s roles had changed substantially, as demonstrated by the naming of the first female shuttle commander. The agency even commissioned a song for the occasion: “Beyond the Sky,” by singer-songwriter Judy Collins. NASA dedicated the historic mission’s launch to America’s female aviation pioneers from the Ninety-Nines—an international organization of women pilots—to the Women Airforce Service Pilots (WASPs), women who ferried aircraft for the military during World War II. Collins also extended an invitation to the women who had participated in ****** Lovelace’s Woman in Space Program, where women went through the same medical and psychological tests as the Mercury 7 astronauts; the press commonly refers to these women as the Mercury 13. (Commander Collins had thanked both the WASPs and the Mercury 13 for paving the way and inspiring her career in aviation and spaceflight in her White House speech.) In a way, it's like my dream come true. Betty Skelton Frankman Pioneering Woman Aviator In a group interview with several of the WASPs in Florida, just before launch, Mary Anna “Marty” Martin Wyall explained why they came. “Eileen Collins was one of those women that has always looked at us as being her mentors, and we just think she’s great. That’s why we want to come see her blast off.” Betty Skelton Frankman expressed just how proud she was of Collins, and how NASA’s first female commander would be fulfilling her dream to fly in space. “In a way,” she said, “it’s like my dream come true.” In the ‘60s it was not possible for a woman to fly in space because none met the requirements as ***** out by NASA. But by the end of the twentieth century, women had been in the Astronaut Office for 20 years, and opportunities for women had grown as women were selected as pilot astronauts. NASA named its second and only other female space shuttle commander, Pamela A. Melroy, to STS-120, and Peggy A. Whitson went on to command the International Space Station. Melroy and Whitson shook hands in space, when their missions coincided, for another historic first—two women commanding space missions at the same time. Twenty-five years ago, Eileen Collins’ command broke down barriers in human spaceflight. As the First Lady predicted, her selection led to other opportunities for women astronauts. More women continue to command spaceflight missions, including Expedition 65 Commander Shannon Walker and Expedition 68 Commander Samantha Cristoforetti. More importantly, Collins became a role model for young people interested in aviation, engineering, math, science, and technology. Her career demonstrated that there were no limits if you worked hard and pursued your passion. Learn More About Eileen Collins Share Details Last Updated Jul 22, 2024 Related TermsEileen M. CollinsFormer AstronautsNASA HistorySTS-93Women at NASA******** History Month Explore More 5 min read Sally Ride Remembered as an Inspiration to Others Article 1 year ago 6 min read The Class of 1978 and the FLATs Article 11 years ago 6 min read Lovelace’s Woman in Space Program Article 20 years ago Keep Exploring Discover More Topics From NASA NASA History Women at NASA Space Shuttle Former Astronauts View the full article
  23. The latest crew chosen by NASA to venture on a simulated trip to Mars inside the agency’s Human Exploration Research Analog. From left are Sergii Iakymov, Erin Anderson, Brandon Kent, and Sarah Elizabeth McCandless.Credit: C7M3 Crew NASA selected a new team of four research volunteers to participate in a simulated mission to Mars within HERA (Human Exploration Research Analog) at the agency’s Johnson Space Center in Houston. Erin Anderson, Sergii Iakymov, Brandon Kent, and Sarah Elizabeth McCandless will begin their simulated trek to Mars on Friday, Aug. 9. The volunteer crew members will stay inside the 650-square-foot habitat for 45 days, exiting Monday, Sept. 23 after a simulated “return” to Earth. Jason Staggs and Anderson Wilder will serve as alternate crew members. The HERA missions offer scientific insights into how people react to the type of isolation, confinement, work and life demands, and remote conditions astronauts might experience during deep space missions. The facility supports more frequent, shorter-duration simulations in the same building as CHAPEA (Crew Health and Performance Analog). This crew is the third group of volunteers to participate in a simulated Mars mission in HERA this year. The most recent crew completed its HERA mission on June 24. In total, there will be four analog missions in this series. During this summer’s simulation, participants will perform a mix of science and operational tasks, including harvesting plants from a hydroponic garden, growing shrimp, deploying a small, cube-shaped satellite (CubeSat) to simulate gathering virtual data for analysis, “walking” on the surface of Mars using virtual reality goggles, and flying simulated drones on the simulated Mars surface. The team members also will encounter increasingly longer communication delays with Mission Control throughout their mission, culminating in five-minute lags as they “near” Mars. Astronauts traveling to Mars may experience communications delays of up to 20 minutes. NASA’s Human Research Program will conduct 18 human health experiments during each of the 2024 HERA missions. Collectively, the studies explore how a Mars-like journey may affect the crew members’ mental and physical health. The work also will allow scientists to test certain procedures and equipment designed to keep astronauts safe and healthy on deep space missions. Primary Crew Erin Anderson Erin Anderson is a structural engineer at NASA’s Langley Research Center in Virginia. Her work focuses on manufacturing and building composite structures — using materials engineered to optimize strength, stiffness, and density — that fly in air and space. Anderson earned a bachelor’s degree in Aerospace Engineering from the University of Illinois at Urbana-Champaign in 2013. After graduating, she worked as a structural engineer for Boeing on NASA’s SLS (Space Launch System) in Huntsville, Alabama. She moved to New Orleans to support the assembly of the first core stage of the SLS at NASA’s Michoud Assembly Facility. Anderson received a master’s degree in Aeronautical Engineering from Purdue University in West Lafayette, Indiana, in 2020. She started her current job in 2021, continuing her research on carbon fiber composites. In her free time, Anderson enjoys playing rugby, doting on her dog, Sesame, and learning how to ride paddleboard at local beaches. Sergii Iakymov Sergii Iakymov is an aerospace engineer with more than 15 years of experience in research and design, manufacturing, quality control, and project management. Iakymov currently serves as the director of the Mars Desert Research Station, a private, Utah-based research facility that serves as an operational and geological Mars analog. Iakymov received a bachelor’s degree in Aviation and Cosmonautics and a master’s in Aircraft Control Systems from Kyiv Polytechnic Institute in Ukraine. His graduate research focused on the motion of satellites equipped with pitch flywheels and magnetic coils. Iakymov was born in Germany, raised in Ukraine, and currently splits his time between southern Utah and Chino Hills, California. His hobbies include traveling, running, hiking, scuba diving, photography, and reading. Brandon Kent Brandon Kent is a medical director in the pharmaceutical industry, supporting ongoing global efforts to develop new therapies across ******* types. Kent received a bachelor’s degrees in Biochemistry and Biology from North Carolina State University in Raleigh. He earned his doctorate in Biomedicine from Mount Sinai School of Medicine in New York City, where his work primarily focused on how genetic factors regulate early embryonic development and ******* development. Following graduate school, Kent moved into scientific and medical communications consulting in oncology, primarily focusing on clinical trial data disclosures, scientific exchange, and medical education initiatives. Kent and his wife have two daughters. In his spare time, he enjoys spending time with his daughters, flying private aircraft, hiking, staying physically fit, and reading. He lives in Kinnelon, New Jersey. Sarah Elizabeth McCandless Sarah Elizabeth McCandless is a navigation engineer for NASA’s Jet Propulsion Laboratory in Southern California. McCandless’ job involves tracking the location and predicting the future trajectory of spacecraft, including the Mars Perseverance rover, Artemis I, Psyche, and Europa Clipper. McCandless received a bachelor’s in Aerospace Engineering from the University of Kansas in Lawrence, and a master’s in Aerospace Engineering from the University of Texas at Austin, focused on orbital mechanics. McCandless is originally from Fairway, Kansas, and ******** an avid fan of sports teams from her alma mater and hometown. She is active in STEM (science, technology, engineering, and mathematics) outreach and education and enjoys camping, running, traveling with friends and family, and piloting Cessna 172s. She lives in Pasadena, California. Alternate Crew Jason Staggs Jason Staggs is a cybersecurity researcher and adjunct professor of computer science at the University of Tulsa. His research focuses on systems security engineering, infrastructure protection, and resilient autonomous systems. Staggs is an editor for the International Journal of Critical Infrastructure Protection and the Critical Infrastructure Protection book series. Staggs supported scientific research expeditions with the National Science Foundation at McMurdo Station in Antarctica. He also previously served as a space engineer and medical officer while working as an analog astronaut in the Hawaii Space Exploration Analog and Simulation (HI-SEAS) atop the Mauna Loa volcano. Staggs received his bachelor’s degree in Information Assurance and Forensics at Oklahoma State University and master’s and doctorate degrees in Computer Science from the University of Tulsa. During his postdoctoral studies at Idaho National Laboratory, Idaho Falls, he investigated electric vehicle charging station vulnerabilities. In his spare time, Staggs enjoys hiking, building radio systems, communicating with ham radio operators in remote locations, and volunteering as a solar system ambassador for NASA’s Jet Propulsion Laboratory — sharing his passion for astronomy, oceanography, and space exploration with his community. Anderson Wilder Anderson Wilder is a Florida Institute of Technology in Melbourne graduate student working on his doctorate in psychology. His research focuses on team resiliency and human-machine interactions. Wilder also works in the campus neuroscience lab, investigating how spaceflight contributes to astronaut neurobehavioral changes. Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology. Wilder received bachelor’s degrees in Linguistics and Psychology from Ohio State University in Columbus. He also received a master’s degree in Space Studies from International Space University in Strasbourg, France, and is completing a second master’s in Cognitive Experimental Psychology from Cleveland State University in Ohio. Outside of school, Wilder works as a parabolic flight coach, teaching people how to experience reduced-gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent *****, he explored a submerged section of the Great Wall of China. ____ NASA’s Human Research Program NASA’s Human Research Program (HRP) pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways to keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond. Explore More 2 min read Exploring the Moon: Episode Previews Article 3 days ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey Article 2 weeks ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program Article 2 weeks ago Keep Exploring Discover More Topics From NASA Living in Space Artemis Human Research Program Space Station Research and Technology View the full article
  24. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA / Maria Werries NASA Aeronautics Returns to Oshkosh Sunday, July 21 at 8:30 p.m. EDT NASA will appear at Oshkosh with a full slate of interactive exhibits, informative activities, and fascinating people to meet. But if you can’t make it we’ve got you covered. Enjoy the show virtually right here on this page. John Gould will be onsite this coming week sending in daily updates with news about NASA’s events and festivities. Our goal is to give you our best “you are there” experience. Just with no cheese curds. — Jim Banke Read the preview story Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024 Article 2 days ago 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 1 week ago 7 min read ARMD Solicitations Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 21, 2024 EditorJim BankeContactJim Banke*****@*****.tld Related TermsAeronautics View the full article
  25. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s pavilion as it will look at EAA AirVenture Oshkosh 2024 is seen in this illustration, Flying into the graphic, clockwise from upper left: the X-66 sustainable flight demonstrator, X-59 quiet supersonic demonstrator, Saab 340B, a small drone, an air taxi concept, and a DeHavillland “Dash 7.” Both the Saaab and Dash 7 are part of the Electrified Powertrain Flight Demonstration project.NASA / Maria Werries Each summer, aviation enthusiasts and experts from around the planet – including NASA’s aeronautical innovators – descend into a regional airport near Oshkosh, Wisconsin, to attend the Experimental Aviation Association’s AirVenture Oshkosh. The weeklong airshow and fly-in, where droves of pilots arrive in their own aircraft, draws hundreds of thousands of aviation enthusiasts to enjoy aerial demonstrations, static aircraft displays, aviation-related forums, and hands-on activities for people of all ages and all education levels. NASA will appear at Oshkosh with a full slate of interactive exhibits, informative activities, and fascinating people to meet. This year’s event, held July 22-28, is chock-full of things to do and see. If you’re attending Oshkosh this year, here’s a brief summary of what you can expect inside the NASA Pavilion and on the forum stages: Meet and greet opportunities with NASA’s researchers, leaders, pilots, and maybe even an astronaut Hands-on educational STEM activities and handouts for kids and adults of all ages Talks and panels on NASA activities from our leadership, engineers, pilots, and other subject matter experts Models of NASA aircraft and spacecraft And if you’re looking for certain activities, NASA guides will be available onsite to help you find the ones best suited to you and your group. NASA Panel Events In addition to the NASA Pavilion and forum talks, there are also several NASA-focused panels that are a can’t miss. For example, the “NASA Artemis Campaign: For All Humankind” panel will be held at 7 p.m. CDT on Friday, July 26 at AirVenture’s Theater in the Woods. The event will feature astronaut ****** Bresnik and subject matter experts discussing the upcoming Artemis II mission. “Women of NASA,” another great panel, will take place at 8:30 a.m. CDT on Wednesday, July 24, the WomenVenture Center. It will feature several inspiring NASA Women, from senior leaders to project managers and engineers. A list of all NASA activities is available on AirVenture’s website, and our aeronautical innovators will be inside the NASA Pavilion to assist you. STEM Engagement Activities The NASA Pavilion’s STEM Zone will have interactive activities and demonstrations. NASA will also have materials available for educators. The STEM Zone will be open Monday to Sunday, July 22-28, from 9 a.m. to 2:30 p.m. CDT. The KidVenture buildings, hosted by the EAA Museum, will include hands-on NASA STEM activities also, and NASA will participate at the AeroEducate Center in Aviation Gateway Park with activities intended for middle- and high-school aged youth – including lectures and a drone flight cage. More NASA’s activities are available on the event schedule or on EAA’s app. Online Oshkosh Coverage Online, NASA will post live updates from Oshkosh with news about NASA’s events and festivities through the week, as well as more information about our flight research goals. The live posts will be a great way to keep up with what’s going on for those who are unable to attend the event in person. Additionally, NASA will post on social media using the hashtag #OSH24. About the AuthorJohn GouldAeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 7 days ago 7 min read ARMD Solicitations Article 3 weeks ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 19, 2024 EditorJim BankeContactJim Banke*****@*****.tld Related TermsAeronautics View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.