Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    1,464
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Thrust Chamber Liner and Fabrication Method Team NASA Marshall Space Flight Center A thrust chamber assembly (TCA) is the critical and central component in a rocket engine that provides thrust to propel a launch vehicle into space. Since the 1960s, while small improvements in TCA performance have been made, little has been done to reduce weight, improve development timelines, and reduce manufacturing cost. This invention makes dramatic improvements in all three areas. This Thrust Chamber Liner and Fabrication Method technology eliminates complex, bolted joints by using 3D printing and large-scale additive manufacturing (AM) to fabricate a one-piece TCA. This creates a combined combustion chamber and nozzle. A novel composite overwrap provides support with an overall mass reduction of >40%. The TCA is the heaviest component on the rocket engine, so every pound eliminated allows for additional payload. The benefits include significantly better performance of launch vehicles, consolidation of parts, and a simplified fabrication that reduces cost and lead time. A liquid rocket engine provides thrust through the injection of a fuel and oxidizer into a combustion chamber then expanding the hot gases through a nozzle. The engine’s core component is the TCA, which comprises an injector, a combustion chamber, and a nozzle. To prevent the TCA’s wall material from reaching melting temperatures, a regenerative cooling system is employed. Small internal channels circulate either fuel or oxidizer as a coolant before it’s injected into the combustion chamber for the combustion process. The TCA must withstand a wide range of challenges, including extreme temperatures (from cryogenic temperatures below -290 °F and up to +6,000°F), high pressures (up to 6,000 psi), demanding duty cycles that impact fatigue life, engine dynamics, and the reactive thrust loads. This necessitates the use of a variety of materials and involves intricate manufacturing and joining processes while maintaining exceptionally tight tolerances. The walls can be as thin as a few sheets of paper, measuring approximately 0.02 inch, increasing the complexity of the technological challenge. The design and construction of the combined combustion chamber and nozzle has several novel features: (1) A NASA-developed alloy, Copper-Chrome-Niobium (GRCop-42) was matured for the combustion chamber resulting in a 45% increase in wall temperatures. (2) The integral channel design supports effective cooling, manifolds, and a range of features that facilitate an integrated coupled nozzle and composite overwrap. (3) The chamber and its internal structures are produced using a NASA-developed (and later commercialized) process known as laser powder bed fusion (L-PBF). This uses minimal exterior material, allowing the composite overwrap to effectively contain the high pressure and various engine loads. (4) Stock material and integral features build the chamber nozzle onto the aft end using a different alloy, optimizing the overall strength-to-weight ratio. (5) Traditionally, AM requires a build plate onto which parts are fabricated, but this innovation can use the chamber itself as the build plate. (6) A large-scale AM process called laser powder directed energy deposition (LP-DED) was developed with a new NASA alloy for hydrogen environments, called NASA HR-1 (HR = hydrogen resistant). The AM employed to integrate the chamber and nozzle involves the use of two distinct AM processes and alloys, using GRCop-42 for the chamber and NASA HR-1 for the nozzle. A composite overwrap significantly reduces weight and provides adequate strength to sustain required pressures and loads. Various filament winding techniques and fiber orientations, guided by modeling simulations effectively counteract the (barrel) static pressure, startup, and shutdown loads, thrust, and gimbal loads. The unique locking features designed into the chamber include turn-around regions (referred to as “humps”) to eliminate complex tooling. Traditional TCA design incorporates multiple manifolds, adding unnecessary weight and bolted or welded joints. These joints necessitate exceedingly tight tolerances, polished surface finishes, and intricate sealing mechanisms to prevent leakage. Maintaining precise concentricity among the components and ancillary features, such as shear-lips to avoid hot gas circulation and ****** separation, is imperative. The risk of potential leakage can lead to the catastrophic ******** of the engine or the entire vehicle. The tragic ********** of the Space Shuttle Challenger serves as a stark reminder of how ****** ********, albeit in a solid rocket motor in that case, can have dire consequences. By contrast, this design eliminates these vulnerabilities by employing integrated AM processes to create a one-piece TCA, dramatically improving safety and efficiency. Thrust Chamber Liner Team Paul R. Gradl Christopher Stephen Protz Cory Ryan Medina Justin R. Jackson Omar Roberto Mireles Sandra Elam Greene William C. C. Brandsmeier Share Details Last Updated Jul 31, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
  2. NASA/JPL On July 31, 1964, the Ranger 7 spacecraft took this photo, the first image of the Moon taken by a ******* States spacecraft. 17 minutes later, it crashed into the Moon on the northern rim of the Sea of Clouds as intended. The 4,316 images sent back helped identify safe Moon landing sites for Apollo astronauts. Until 1964, no closeup photographs of the lunar surface existed. Ranger 7 returned the first high resolution close-up photographs of the lunar surface. The mission marked a turning point in America’s lunar exploration program, taking the country one step closer to a human Moon landing. Learn more about Ranger 7. Image credit: NASA/JPL View the full article
  3. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA used its remotely piloted Ikhana aircraft to test technology it helped develop or recommended to the U.S. Forest Service, including a system to send sensor data to decision makers on the ground in near real time.Credit: NASA It’s not easy to predict the path of forest fires—a lot depends on constantly changing factors like wind. But it is crucial to be as accurate as possible because the lives, homes, and businesses of the tens of thousands of people living and working in *****-prone areas depend on the reliability of these predictions. Sensors mounted on airplanes or drones that provide a picture of the ***** from above are an important tool, and that’s where NASA comes in. In partnership with the U.S. Forest Service, local and state firefighting agencies, and the Bureau of Land Management, NASA plays a pivotal role in battling infernos. The agency’s extensive experience and technical expertise in remote sensing technology have significantly improved the speed and accuracy of information relayed to firefighting decision-makers. According to Don Sullivan, who specialized in information technology design at the time, the Airborne Science Program at NASA’s Ames Research Center in Silicon Valley, California, was integral to that effort. In the 1990s, NASA began a project to adapt uncrewed aircraft for environmental research. The researchers at Ames wanted to ensure the technology would be useful to the broadest possible spectrum of potential end users. One concept tested during the project was sending data in real-time to the ground via communications links installed on the aircraft. That link sent data faster and to multiple recipients at once—not just the team on the ***** front line, but also the commanders organizing the teams and decision makers looking at the big picture across the entire region throughout the ***** season, explained Sullivan. For the Forest Service, this was a much-needed upgrade to the original system on their crewed jets: rolling up a printout and later thumb drives with thermal sensor data placed into a plastic tube attached to a parachute and dropped out of the airplane. NASA’s remotely piloted aircraft called Ikhana tested the technology, and it’s still used by the agency to collect data on wildfires. Since the introduction of this technology, wildfires have gotten *******, ***** hotter, and set new records every year. But in California in 2008, this technology helped ****** what was then the worst ***** season on record. A NASA test flight using a data downlink system provided updated information to the incident managers that was crucial in determining where to send firefighting resources and whether a full evacuation of the town of Paradise was needed. Without that timely information, said Sullivan, “there likely would have been injuries and certainly property damage that was worse than it turned out to be.” Read More Share Details Last Updated Jul 31, 2024 Related TermsGeneral Explore More 5 min read NASA Public Engagement Specialist Loves to Inspire Kids with STEM Article 2 hours ago 3 min read NASA’s First-Ever Quantum Memory Made at Glenn Research Center Article 5 hours ago 8 min read Overview for NASA’s Northrop Grumman 21st Commercial Resupply Mission NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:29 a.m. EDT on Saturday,… Article 23 hours ago Keep Exploring Discover Related Topics Earth Observations ***** and Air Quality Climate Change Drones & You View the full article
  4. SSE-Skywatching Skywatching Home Eclipses What’s Up Daily Guide Night Sky Network Tips and Guides More FAQ 6 min read What’s Up: August 2024 Skywatching Tips from NASA What to look for: A planetary rendezvous, meteors, and a “star forge”! Two planets meet for a super close conjunction, the Perseid meteor shower peaks, and look for the Lagoon Nebula – a stellar nursery in Sagittarius. Highlights August 4 – New moon August 11 – The Perseid meteor shower peaks overnight tonight! Provided you have clear skies, viewing conditions will be favorable this year, as the Moon sets by around 11:30 pm local time. Meteor activity picks up from then until dawn. August 14 – Jupiter and Mars have an extremely close pair-up called a conjunction this morning. They’ll appear just a third of a degree apart, which is less than the width of the full Moon. Find them in the eastern sky in the couple of hours before sunrise. August 19 – Full moon August 20 – The Moon chases Saturn across the sky tonight. The pair rise in the east shortly after dark, and trek toward the west together until dawn. August 27 – This morning the crescent moon joins Mars and Jupiter to form a captivating trio. Look for them in the east in the hour or so before sunrise. All month – You can use binoculars or a telescope to observe the Lagoon Nebula all month in the first few hours after dark. It’s located in the constellation Sagittarius near the star pattern known as “The Teapot.” Similar in size and brightness to the Orion Nebula, it’s a cauldron of star formation located about 4,000 light years away. Sky chart showing the conjunction of Mars and Jupiter in the morning of August 14. NASA/JPL-Caltech Transcript What’s Up for August? A super close meetup of Jupiter and Mars, the outlook for the Perseid meteors, and see a stellar nursery in the Lagoon Nebula. During the month of August, the Red Planet, Mars, speeds past our solar system’s largest planet, Jupiter, in the a.m. sky. They have an extremely close pair-up, called a conjunction, on August 14th, when they’ll appear just a third of a degree apart, which is less than the width of the full Moon. The view from NASA’s Eyes on the Solar System reveals the two planets arranged along the same line of sight, which is why they appear so close together in the sky at this time. Mars quickly pulls away from Jupiter over the following mornings, but on the 27th, the crescent moon joins the two planets to form a captivating trio in the morning sky. Sky chart showing a planetary trio of the crescent moon, Jupiter, and Mars on the morning of August 27. NASA/JPL-Caltech Saturn flies solo most of the month on the opposite side of the sky, though the Moon chases close behind the Ringed Planet on August 20th. The pair rise shortly after dark, and trek toward the west together until dawn. The warm summer nights of August in the Northern Hemisphere make the Perseid meteor shower an annual favorite. This year’s peak night for Perseids comes on August 11th, and into morning twilight on the 12th. Provided you have clear skies, viewing conditions will be favorable this year, as the Moon sets by around 11:30 pm local time. Meteor activity picks up from then until dawn. From darker viewing locations, meteor counts of 50 to 75 per hour are pretty normal at the peak. The Perseids appear to originate from a place in the sky that rises in the northeast, so lie back and face roughly in that direction, but try to take in as much of the sky as you can in your view, as meteors can appear all over. All the stars in the sky share a common origin in giant clouds of gas and dust called nebulas. And one such stellar nursery, the Lagoon Nebula, is well placed to observe in the August sky. Image Before/After The Lagoon Nebula will feel familiar to you if you’ve ever observed the Orion Nebula – with the latter being just a bit brighter. Being about three times wider than the full moon, it’s still relatively easy to find, even under suburban skies, with binoculars or a small telescope. The Lagoon Nebula is located in the constellation Sagittarius, which regular skywatchers will know is synonymous with the faintly glowing band of the Milky Way core. You’ll find it here, just above the top of the star pattern known as the Teapot. The nebula is located about 4,000 light years away. Its oblong structure is about 100 light years long by about 50 light years wide. It’s a cauldron of intense star forming activity, with many young stars blazing brightly, causing the surrounding gas to glow. That glow is faint and colorless when peering at the Lagoon Nebula through binoculars, but long-exposure photos reveal its colorful nature. The bright stars are also sculpting the nebula, creating voids and turbulent knots and streamers of gas. The nebula gets its name from one of these dense, dark clouds that stretches across its middle, looking something like a watery lagoon. The Lagoon Nebula appears high overhead in August for those in the Southern Hemisphere, and quite low for those at higher northern latitudes, but it’s visible throughout the lower 49 ******* States. If you can locate the stars in the Teapot, you should be able to observe the nebula too. To find it, follow a line toward the west, twice the distance from the top of the Teapot’s handle to the top of its lid. Nebulas can be challenging to observe, even with a telescope. But with its large size and relative brightness, the Lagoon Nebula offers a great opportunity to see one of these star forges for yourself in August. Here are the phases of the Moon for August. The phases of the Moon for August 2024. Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. Skywatching Resources​ NASA’s Night Sky Network NASA’s Watch the Skies Blog Daily Moon Observing Guide About the ‘What’s Up’ Production Team “What’s Up” is NASA’s longest running web video series. It had its first episode in April 2007 with original host Jane Houston Jones. Today, Preston Dyches, Christopher Harris, and Lisa Poje are the space enthusiasts who produce this monthly video series at NASA’s Jet Propulsion Laboratory. Additional astronomy subject matter guidance is provided by JPL’s Bill Dunford, Lyle Tavernier, and the Night Sky Network’s Kat Troche. The What’s Up team celebrates the memory of Gary Spiers, who provided astronomy observing guidance for the series for many years. View the full article
  5. Jonas Dino speaks to students at the Cezar Chavez Middle School in Union City, California, as part of a NASA-sponsored traveling space museum tour of Bay Area schools. Careers at NASA were not on his radar growing up. But Jonas Dino, public engagement specialist at NASA’s Ames Research Center in California’s Silicon Valley, ended up with his perfect job that involves connecting people with NASA. One of the best parts of his job is to learn first-hand about NASA’s cutting-edge research and translate these concepts to the next generation. “I’m excited about what NASA does and where we are going,” said Dino, “As an extrovert, I love interacting with the public, especially little kids.” When speaking to younger children, Dino often kneels, to get to their level. With the future of aeronautics and space exploration in mind, he has a message for them: ‘NASA needs you.’ “They love space and think it is very cool, but many don’t think they could ever work at NASA,” said Dino. “I want to help them see: anything is possible.” NASA’s Ames Research Center in California’s Silicon Valley takes NASA’s message on the road to area schools and public events with its public engagement trailer. Jonas Dino is shown unloading the trailer for an event.NASA/Dominic Hart A path to NASA he didn’t know existed A first-generation immigrant from the Philippines, Dino’s academic start focused on studying life sciences. “As a *********, you’re encouraged to go into the medical field as a career,” said Dino. After joining the Marine Corps, Reserve, he returned home to study biology at San Jose State University (SJSU). After doing poorly at organic chemistry, he took his next “logical” step and switched his major to nursing. After working in the field, he realized that was not for him either. Luckily, he had been taking psychology classes, following his interests, and could graduate with a psychology degree by only taking two more classes. After three changes in major and just getting ready to graduate, Dino was hit by a car. His injury and subsequent recovery gave him time to evaluate what he wanted to do with his life. “I was pretty good at talking to people and teaching,” said Dino. “Maybe I could to that as a job?” Dino started his teaching career at James Logan – the same high school he graduated from in 1985. He eventually ran for and was elected as a trustee for the New Haven Unified School District in the San Francisco Bay Area. Unfortunately, to take that seat, he could not be a teacher in the district – a conflict of interest. Suddenly needing a job, he found the internship book at SJSU where he was getting his master’s degree. Soon, he was evaluating opportunities: a high-tech company or NASA? “It was during the dotcom ***** and my family strongly encouraged me to take the high-tech internship,” said Dino. “I took the internship at NASA Ames and have never regretted my decision.” Working as a communicator, Dino has covered the gamut of NASA projects from aeronautics to space missions, including a lunar mission, LCROSS, that helped confirm the presence of water on the Moon. His favorite part of his job is STEM engagement. “There is nothing like seeing a ****’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new,” said Dino. “When you see kids are hungry for science, you need to feed it.” He did serve his community on the school board for four terms – 16 years. Now, he serves as an advocate for the NASA Ames workforce as president of the Ames Federal Employees Union. “NASA is a great place to work, it has been a blast, for nearly 24 years.” Science data from NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission’s 2009 lunar impact helped confirm the presence of water on the Moon. Here, LCROSS project manager, Daniel Andrews (left), points to a model of the LCROSS spacecraft integrated with the Atlas V Centaur upper stage rocket. Jonas Dino (right) led public communications for the mission at NASA Ames.NASA/Eric James Nudging an asteroid A little push in the right direction, even incidental, can have a huge effect on your trajectory – and thus where you end up – if it happens early on. This is true both for rogue rocks, on the loose in the solar system, and for people too. “When I was a ****, I took apart everything because I wanted to know what’s inside and how everything worked,” said Dino. “Looking back, I should have been an engineer.” “I have two children, a son and a daughter,” said Dino. “I’m encouraging my daughter to go into STEM; we need more young women in STEM careers but too many ****** are pushed away from this choice by the time they are in middle school. I also want to encourage ********* kids to make their own career choices and maybe even to come work for NASA.” To help pursue these goals, Dino started a memorial scholarship in honor of his father for ********* students going into STEM fields. He handed out the inaugural scholarship for this last May. There is nothing like seeing a ****’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new. Jonas Dino Public engagement specialist, president of the Ames Federal Employees Union NASA never stops for Dino. Whether at work or on his free time, he’s always talking about NASA. While dishing out samples of his ********* adobo recipe during a recent adobo-cooking contest – according to Dino, every ********* family has their own recipe for this dish – he also handed out NASA knowledge. He won second place. View the full article
  6. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Glenn Research Center’s quantum team stands with new quantum memory laboratory equipment.Credit: NASA/Jef Janis Bringing bright minds together has once again proven to be the key to unlocking the mysteries of the universe. Researchers developed technology that will store information within a cloud of atoms. Together with Infleqtion Inc., researchers at NASA’s Glenn Research Center in Cleveland produced NASA’s first-ever quantum memory. This technology is NASA’s first step in creating a large-scale quantum network, which could lead to more secure space communications and, eventually, new scientific discoveries. Quantum memory stores information encoded in matter or on photons — which are single particles of light ­— for a certain amount of time. The memory developed in partnership with Glenn stores information in a cloud of laser-cooled atoms and later releases it as photons. On Earth, many quantum networks use fiber optic infrastructure. However, quantum information degrades after just a few dozen miles, greatly limiting the size of any future network. Quantum memory will help enable the expansion of quantum networks to send information over longer distances. Credit: NASA/Steve Logan “If we’re able to put quantum memory into space, then we could use free space transmission and further those distances to spanning the country,” said Dr. Adam Fallon, quantum scientist at NASA Glenn. A large-scale quantum network would process information faster, provide better information security, and improve the accuracy of how we explore the world compared to a traditional computer network. “So, quantum may provide NASA the ability to explore or sense things in space that we could not do otherwise classically,” said Evan Katz, quantum scientist at NASA Glenn. “While quantum networks are a little further down the road, in the here-and-now, we are excited to have received this memory through an SBIR effort with Infleqtion Inc. so that we can understand more about how quantum memory impacts quantum networks.” A cloud of rubidium atoms is illuminated by a red laser. Quantum memory stores information that is encoded in matter or on photons for a certain amount of time. Credit: NASA/Jef Janis Glenn’s quantum team intends to study and refine the new technology and then plug what they’ve learned into models to simulate how it would work in a large-scale quantum network. From there, they plan to provide feedback to NASA, academia, and industry so all parties can come closer to their goal of developing a quantum network. Infleqtion Inc. created the quantum memory through the NASA Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Program, which provides funding for research, development, and demonstration of innovative technologies that fulfill the needs of NASA and the commercial marketplace. Learn more about the SBIR/STTR program. Explore More 8 min read Overview for NASA’s Northrop Grumman 21st Commercial Resupply Mission NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:28 a.m. EDT on Saturday,… Article 18 hours ago 2 min read Ames Science Directorate’s Stars of the Month, July 2024 Article 20 hours ago 3 min read NASA Embraces Streaming Service to Reach, Inspire Artemis Generation Article 2 days ago View the full article
  7. Northrop Grumman’s Cygnus spacecraft in the grips of the Canadarm2 robotic arm shortly after being captured at the International Space Station.Credit: NASA NASA, Northrop Grumman, and SpaceX are targeting 11:28 a.m. EDT on Saturday, Aug. 3, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. NASA’s live launch coverage will begin at 11:10 a.m. on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media. Filled with nearly 8,200 pounds of supplies, the Northrop Grumman Cygnus spacecraft, carried on the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. NASA coverage of arrival will begin at 2:30 a.m. Monday, Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm, and NASA astronaut Jeanette Epps will act as backup to Dominick. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port. Highlights of space station research facilitated by delivery aboard this Cygnus are: Test articles to evaluate liquid and gas flow through porous media found in space station life support systems. A balloon, penny, and hexnut for a new STEMonstration on centripetal force. Microorganisms known as Rotifers to examine the effects of spaceflight on DNA repair mechanisms. A bioreactor to demonstrate the production of many high-quality blood and immune stem cells. Vascularized liver tissue to analyze the development of blood vessels in engineered tissue flown to the space station. NASA’s CubeSat Launch Initiative also is sending two CubeSats to deploy from the orbiting laboratory, CySat-1 from Iowa State University and DORA (Deployable Optical Receiver Aperture) from Arizona State University, making up ELaNa 52 (Educational Launch of Nanosatellites). Media interested in speaking to a science subject matter expert, should contact Sandra Jones at sandra.p*****@*****.tld. The Cygnus spacecraft is scheduled to remain at the space station until January when it will depart the orbiting laboratory at which point it will ***** up in the Earth’s atmosphere. This spacecraft is named the S.S. Richard “*****” Scobee after the former NASA astronaut. NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): Friday, Aug. 2 3 p.m. – Prelaunch media teleconference (no earlier than one hour after completion of the Launch Readiness Review) with the following participants: Bill Spetch, operations integration manager, NASA’s International Space Station Program Meghan Everett, deputy chief scientist, NASA’s International Space Station Program Ryan Tintner, vice president, civil space systems, Northrop Grumman Jared Metter, director, flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Media who wish to participate by phone must request dial-in information by 1 p.m. Aug. 2, by emailing Kennedy’s newsroom at ksc*****@*****.tld. Audio of the teleconference will stream live on the agency’s website at: [Hidden Content] Saturday, Aug. 3: 11:10 a.m. – Launch coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. 11:28 a.m. – Launch NASA Television launch coverage Live coverage of the launch on NASA Television will begin at 11:10 a.m., Aug. 3. For downlink information, schedules, and links to streaming video, visit: [Hidden Content]. Audio of the news teleconference and launch coverage will not be carried on the NASA “V” circuits. Launch coverage without NASA TV commentary via a tech feed will not be available for this launch. NASA website launch coverage Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 11:10 a.m., Aug. 3, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates. Attend Launch Virtually Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. Engage on Social Media Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts: X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS_CASIS Facebook: NASA, NASAKennedy, ISS, ISS National Lab Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab Coverage en Espanol Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese **** Antonia Jaramillo o Messod Bendayan a: *****@*****.tld o *****@*****.tld. Learn more about the commercial resupply mission at: [Hidden Content] -end- Claire O’Shea / Josh Finch Headquarters, Washington 202-358-1100 claire.a.o’*****@*****.tld / *****@*****.tld Stephanie Plucinsky / Steven Siceloff Kennedy Space Center, Fla. 321-876-2468 *****@*****.tld / steven.p*****@*****.tld Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p*****@*****.tld Laura Keefe Northrop Grumman, Cygnus 571-205-0258 *****@*****.tld Share Details Last Updated Jul 30, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)Commercial ResupplyISS ResearchJohnson Space CenterKennedy Space CenterNorthrop Grumman Commercial Resupply View the full article
  8. NASA’s Northrop Grumman 21st commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.NASA NASA’s Northrop Grumman 21st commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:28 a.m. EDT on Saturday, Aug. 3, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station. Filled with more than 8,200 pounds of supplies, the Cygnus cargo spacecraft, carried on the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. Live launch coverage will begin at 11:10 a.m. and stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms. Learn more at: www.nasa.gov/northropgrumman Northrop Grumman S.S. Richard “*****” Scobee NASA selected Richard Scobee as an astronaut in 1978. Scobee flew as a pilot of STS 41-C and was the commander of STS 51-L. The STS 51-L crew, including Scobee, ***** on January 28, 1986, when space shuttle Challenger exploded after launch.NASA Arrival & Departure The Cygnus spacecraft will arrive at the orbiting laboratory on Monday, Aug. 5, filled with supplies, hardware, and critical materials to directly support dozens of scientific and research investigations during Expeditions 71 and 72. NASA astronaut Matthew Dominick will capture Cygnus using the station’s robotic arm, and NASA astronaut Jeanette Epps will act as backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend almost six months connected to the orbiting laboratory before departing in January 2025. Cygnus also provides the operational capability to reboost the station’s orbit. Live coverage of Cygnus’ arrival will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. NASA astronauts Matthew Dominick and Jeanette Epps will be on duty during the Cygnus spacecraft’s approach and rendezvous. Dominick will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Epps monitors the vehicle’s arrival.NASA Research Highlights Scientific investigations traveling in the Cygnus spacecraft include tests of water recovery technology and a process to produce blood and immune stem cells in microgravity, studies of the effects of spaceflight on engineered liver tissue and microorganism DNA, and live science demonstrations for students. Gravitational Effects on Filtration Systems The Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles.NASA The Packed Bed Reactor Experiment: Water Recovery Series investigates how gravity affects two-phase flow or simultaneous movement of gas and liquid through porous media. Teams will evaluate eight different test articles representing components found in the space station’s water processor or ****** processor to understand two-phase flows for both liquid and gas in microgravity. Packed bed reactors are structures that use “packing” of objects, usually pellet-like catalysts, of various shapes and materials to increase contact between different phases of fluids. These systems are used for a variety of applications such as water recovery, thermal management, and fuel cells, and the experiment develops a set of guidelines and tools to optimize their design and operation for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems. Balloon Sounds in Space The Office of STEM Engagement’s Next Gen STEM Project, STEMonstrations, that will demonstration the effects centripetal force has on sounds during spaceflight.NASA’s Office of STEM Engagement STEMonstrations, as part of NASA’s Next Gen STEM (science, technology, engineering, and mathematics) Project, are performed and recorded by astronauts on the space station. Each NASA STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students. Astronauts will demonstrate centripetal force on the space station using a penny, a hexnut, and two clear balloons. The penny and the hexnut are whirled inside of the inflated balloon to compare the sounds made in a microgravity environment. Cell Production on Station The production of blood and immune stem cells on the space station with the BioServe In-Space Cell Expansion Platform (BICEP).NASA In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) tests hardware to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood *********, autoimmune disorders, and cancers. Researchers use BioServe In-Space Cell Expansion Platform, a stem cell expansion bioreactor designed to expand the stem cells three hundredfold without the need to change or add new growth media. Someone in the ******* States is diagnosed with a blood ******* about every three minutes. Treating patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells. Spaceflight Effects on DNA The Rotifer-B2 investigation on the Internation Space Station explores the effects of spaceflight on DNA (deoxyribonucleic acid) repair mechanisms.ESA (********* Space Agency) Rotifer-B2, an ESA (********* Space Agency) investigation, explores how spaceflight affects DNA (deoxyribonucleic acid) repair mechanisms in a microscopic organisms called bdelloid rotifer, or Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. Researchers culture rotifers, microorganisms that inhabit mainly freshwater aquatic environments, in an incubator facility on the space station. After exposure to microgravity conditions, the samples provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth. Bioprinting Tissue The Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) investigation used to conduct bioprinting of tissue on the space station. NASA Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) examines engineered liver tissue constructs that contain blood vessels. Researchers aim to learn more about the progression of tissue and development of blood vessels in engineered tissues on the space station. The experiment observes how bioprinted liver tissue behaves in space and whether microgravity causes changes in cell shape, size, and volume. The formation of tissue structures and vascular linings also are studied to ensure proper structure generation in orbit. Bioprinting in microgravity may enable the manufacturing of high-quality tissues and organs that are difficult to maintain on the ground, which could help advance space-based production of tissues and functional organs to treat patients on Earth. Cargo Highlights SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station. NASA’s Northrop Grumman 21st commercial resupply mission will carry more than 8,500 pounds (3,856 kilograms) of cargo to the International Space Station.NASA Hardware International Space Station Roll Out Solar Array Modification Kit 8 – This upgrade kit consists of power cables and large structural components such as a backbone, mounting brackets, and two sets of struts. This kit will support the installation of the eighth set of roll out solar arrays located on the S6 truss segment of orbiting laboratory in 2025. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power. Plant Habitat Environmental Control System – The environmental control system is a component of the Advanced Plant Habitat and controls the temperature, humidity, and air flow in the growth chamber. The habitat is an enclosed, fully automated plant growth facility that will conduct plant bioscience research in orbit for up to 135 days and complete at least one year of continuous operation without maintenance. Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the rate of angular motion of the space station. The assembly is integrated into the enclosure housing on ground to protect the hardware for launch and in-orbit storage. This unit will serve as an in-orbit spare. ********* Enhanced Exploration Exercise Device & Vibration Isolation and Stabilization System (E4D VIS) Assembly Kit – This assembly kit consists of fasteners, clips, and labels to be used during the in-orbit assembly projected to be completed in mid-2025. ESA and the Danish Aerospace Company developed the E4D to address the challenge of preventing muscle and bone deterioration during long space missions. Some key features of E4D are resistive exercise, cycling ergonomic exercise, rowing, and rope pulling. X-Y Rotation Axis Launch Configuration – This assembly consists of the X-Y-Rotational and Translational subassemblies in the flight configuration and adds the launch stabilization hardware to protect the various axes of motions for the transport to the space station. Once in orbit, the stabilizing hardware will be discarded, and the remaining assembly will then be installed into the Columbus module location with other subassemblies to provide a base for the E4D exercise device. Pressure Control and Pump Assembly – This assembly evacuates the Distillation Assembly at startup, periodically purges non-condensable gases and water vapor, and pumps them into the Separator Plumbing Assembly as part of the ****** Processing Assembly. This unit will serve as an in-orbit spare to ensure successful ****** processing operation capability without interruption. Resupply Water Tanks – The resupply water tanks are cylindrical composite fibrewound pressure tanks that provide stored potable water for the space station. NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS Maintenance Kit is comprised of two separate assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized for launch with Nitrogen gas. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. Tungsten Plates – A total of 14 tungsten plates will serve as the counter mass of the Vibration Isolation & Stabilization System designed to integrate with the ********* Enhanced Exercise Device. Watch and Engage Live coverage of the launch from Cape Canaveral Space Force Station will stream on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Coverage will begin at 11:10 a.m. on Aug. 3. Live coverage of Cygnus’ arrival at the space station will begin at 2:30 a.m. Aug. 5 on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. View the full article
  9. 4 min read Repair Kit for NASA’s NICER Mission Heading to Space Station NASA will deliver a patch kit for NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, on the agency’s Northrop Grumman 21st commercial resupply mission. Astronauts will conduct a spacewalk to complete the repair. Located near the space station’s starboard solar array, NICER was damaged in May 2023. The mission team delivered the patch kit to NASA’s Johnson Space Center in Houston in May 2024 so it could be prepped and packed for the upcoming resupply mission. “It’s incredible that in just one year, we were able to diagnose the problem and then design, build, test, and deliver a solution,” said Steve Kenyon, NICER’s mechanical lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re so excited to see the patches installed during a future spacewalk, return to a more regular operating schedule, and keep doing groundbreaking science.” This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA UAE (******* ***** Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the Poisk Mini-Research Module 2 on the space station in July 2023. Photos like this one helped the mission team map the damage to the thermal shields over NICER’s X-ray concentrators. NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph. NASA/Sultan Alneyadi From its perch on the station, the washing machine-sized NICER studies the X-ray sky. It has precisely measured superdense stellar remnants called neutron stars, which contain the densest matter scientists can directly observe. It has also investigated mysterious fast radio bursts, observed comets in our solar system, and collected data about Earth’s upper atmosphere. But in May 2023, NICER developed a “light *****,” where unwanted sunlight began entering the telescope. Photos taken aboard the station revealed several areas of damage to NICER’s thermal shields. The shields are 500 times thinner than a human hair and filter out infrared, ultraviolet, and visible light while allowing X-rays to pass through. They cover each of NICER’s 56 X-ray concentrators, sets of 24 nested circular mirrors designed to skip X-rays into corresponding detectors. A sunshade tops each concentrator and shield assembly, with a slight gap in between. The sunshades are segmented by six internal struts, resembling a sliced pie. The largest damage to the shields is around the size of a typical U.S. postage stamp. The other areas are closer in size to pinheads. During the station’s daytime, the damage allows sunlight to reach the detectors, saturating sensors and interfering with NICER’s measurements. The mission team altered their daytime observing strategy to mitigate the effect. The damage does not impact nighttime observations. “NICER wasn’t designed to be serviced or repaired,” said Keith Gendreau, the mission’s principal investigator at Goddard. “It was installed robotically, and we operate it remotely. When we decided to investigate the possibility of patching the largest damaged areas on the thermal shields, we had to come up with a method that would use the existing parts of the telescope and station toolkits. We couldn’t have done it without all the support and collaboration from our colleagues at Johnson and throughout the space station program.” NICER’s patches are made from aluminum and anodized, or coated, ******. Each is about 2 inches tall. “LCK” indicates the lock position for a tab at the bottom that will hold the patch in place. NASA is sending 12 of these patches to the International Space Station. During a spacewalk, astronauts will insert five into sunshades on the telescope to cover the most significant areas of damage. NASA/Sophia Roberts NICER’s patches will be inserted into its sunshades, as shown here. The small tab that locks the patch into place is visible beneath it. The carbon composite sunshades cover each of NICER’s 56 X-ray concentrators. Each sunshade is supported by three gold-******** fiberglass mounting feet. NASA/Sophia Roberts NICER’s thermal shields — the silver film shown here — cover each of the mission’s 56 X-ray concentrators. They block ultraviolet, infrared, and visible light while allowing X-rays to pass through to the mirrors underneath. Each shield is only about 160 nanometers thick, or 500 times thinner than a human hair. The fragile shield is supported by a stainless-steel frame which consists of a pattern of 1/8 inch (3 millimeter) squares in each of the wedges. NASA/Sophia Roberts NICER has 56 individual X-ray focusing elements, called concentrators, that each contain 24 nested mirrors. Every concentrator delivers X-rays to its own detector. The concentrator shown here is tilted on its side, so the camera is looking into the nested mirrors. X-rays are high-energy light, so they can pass through the atoms of telescope mirrors like those for NASA’s Hubble and James Webb space telescopes. Instead, X-ray observatories use grazing incidence mirrors, where the surfaces are turned on their sides. X-rays skip across their surfaces and into detectors. NASA/Sophia Roberts The solution, in the end, was simple. The team designed patches, each shaped like a piece of pie, that will slide into the sunshades. A tab at the bottom of each patch will turn into the space between the bottom of the sunshade and the top of the thermal shield, keeping it in place. Astronauts will install five patches during the spacewalk. They’ll cover the most significant areas of damage and block the sunlight affecting NICER’s X-ray measurements. The repair kit contains 12 patches in total, allowing for spares if needed. Astronauts will carry the patches in a caddy, a rectangular frame containing two spare sunshades with the patches held inside. “NICER will be the first X-ray telescope in orbit to be serviced by astronauts and only the fourth science observatory to be repaired overall — joining the ranks of missions like NASA’s Hubble Space Telescope,” said Charles Baker, the NICER project systems engineer at Goddard. “It’s been amazing to watch the patch kit come together over the last year. NICER has taught us so many wonderful things about the cosmos, and we’re really looking forward to this next step of its journey.” The NICER caddy is an aluminum box containing two of the mission’s spare sunshades, which are attached to the bottom. Inside the sunshades, 12 patches are locked into place. Astronauts will take the complete caddy assembly with them during a future spacewalk to address damage to NICER’s thermal shields. They’ll insert five of the patches over the largest areas of damage, which will allow the mission to return to a normal operating status during the station’s daytime. The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. Download high-resolution NICER images and videos By Jeanette Kazmierczak NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 *****@*****.tld NASA’s Goddard Space Flight Center, Greenbelt, Md. Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share Details Last Updated Jul 30, 2024 Related Terms Astrophysics Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
  10. The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Ryan T. Scott, Mike Kubo, Ehsan (Sam) Gharib-Nezhad, and Kristen Okorn. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond. Space Biosciences Star: Ryan T. Scott Ryan Scott, a Space Biosciences Research Branch (SCR) scientist, serves as the Science Lead for the Open Science Data Repository (OSDR) and chairs the Ames Life Sciences Data Archive (ALSDA) analysis working group, where he guides the efforts of nearly 200 professionals. He contributed significantly to the Space Omics and Medical Atlas (SOMA) Nature publication package, the largest-ever collection of data for aerospace medicine and space biology. Space Science Star: Mike Kubo Mike Kubo is an indispensable member of the Exobiology Branch (STX) with expertise in astrobiology and biogeochemistry who plays a vital role in the conduct of research and outreach. While always a star in the branch, most recently, Mike saved the day by noticing the imminent ******** of a shared research-grade freezer in building N239 that stored irreplaceable samples, and quickly identified a replacement. Space Science Star: Ehsan (Sam) Gharib-Nezhad Dr. Ehsan (Sam) Gharib-Nezhad is a data and research scientist with the Planetary Systems Branch (STT). A specialist in exoplanetary atmospheres and artificial intelligence (AI)/machine learning (ML), Sam was recently selected as lead for the Habitable Worlds Observatory (HWO) working group for AI/ML. Earth Science Star: Kristen Okorn Kristen Okorn is a Research Scientist with the Bay Area Environmental Research Institute (BAERI), affiliated with the Atmospheric Science Branch (SGG). She is one of the two center coordinators for NASA’s Disasters Response Coordination System, and the PI for the recently awarded NASA Mentoring and Opportunities in STEM with Academic Institutions for Community Success (MOSAICS) seed project focused on year-round hands-on learning and mentoring of three undergraduate students from a *********-serving institution (Whittier College) in the use of low-cost sensors and satellite-based measurements to study regional air pollution. View the full article
  11. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4259-4260: Kings Canyon Go Again! MAHLI image of the brushed “Kings Canyon” target NASA/JPL-Caltech/MSSS Earth planning date: Monday, July 29, 2024 Our weekend drill preload test on the target “Kings Canyon” (shown in the accompanying MAHLI image) didn’t give us the full range of data we need to move forward with the full drilling process. This coming Wednesday, we hope to rerun our preload test on Kings Canyon or somewhere very similar on the same bedrock, and to get APXS and ChemCam analyses in order to determine scientific suitability for drilling. As a result, this plan focused on getting the arm ready to fulfill those diagnostic activities, described by our Science Operations Team Chief Elena in last Friday’s blog. In the meantime, we are in such an interesting area that we have a very long liens list (our wish list). Our problem today and probably for the foreseeable future will be a good one – trying to keep below our upper limits on how much of that wish list we are going to try to get in on a given day! We have recently seen examples of bedrock slabs or outcrops with a flat, paler toned centre and a rim of darker, greyer material which surrounds the main slab. We saw this about 50 sols ago at the Mammoth Lakes drill site and we see it here too. The relationships between the centre of the slab and the rim are very intriguing and we are keen to understand the interplay between the two textures. Mastcam will take two large mosaics in this area. “Sam Mack Meadow” is a 7×4 mosaic (i.e., 4 rows of 7 images) on an area of crushed grey material, and “Merced Grove” is a 7×6 mosaic on more intact rim material. ChemCam have also planned a LIBS analysis of Merced Grove and one at “Clinch Pass” in the centre of the block. Together these activities will help us to look at relationships here and to compare with previous examples, such as at the Mammoth Lakes drill site. ChemCam will acquire a passive measurement on “Wilts Col,” a small dark toned float rock about 4 metres away from the rover as part of a continuing campaign to assess the nature of the floats (loose rocks) which are strewn around this part of the crater. ChemCam will also acquire 2 RMI (long distance images) 10×1 mosaics, looking at the stratigraphy and layering of the distant hills – getting a head start on the science assessment before we even get close! The atmosphere and environment science theme group (ENV) also crammed their section of the plan full of activities. Since landing (almost 12 years ago now!!), the ENV group has been reporting on environmental conditions in Gale, and this plan was no exception. We have some regular DAN passives, REMS activities and a Navcam dust ****** movie, and a single Mastcam “Tau” measurement, which looks at dust in the atmosphere. Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick Share Details Last Updated Jul 30, 2024 Related Terms Blogs Explore More 3 min read Sols 4257-4258: A Little Nudge on Kings Canyon Article 20 hours ago 2 min read Sols 4255-4256: Just Passing Through Article 20 hours ago 2 min read Sols 4253-4254: Pit Stop for Contact Science Article 7 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  12. Learn Home GLOBE Alumna and Youth for… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 4 min read GLOBE Alumna and Youth for Habitat Program Lead Named Scientist of the Month in Alaska As a 16-year old high school graduate, Maggie House decided to leave the military base in Germany where she lived with her family and go to college close to nature in Fairbanks, Alaska. She had lived in many countries and US states and knew she was ready. At the University of Alaska Fairbanks Troth Yeddha’ campus in Fall 2022, Maggie enrolled in a 300-level Watershed Management course, which required all students to implement a Global Learning and Observations to Benefit the Environment (GLOBE) project and poster. Maggie’s project focused on using the GLOBE Observer App to monitor the erosion of nearby Cripple Creek, which had a history of mining and made Fairbanks famous for its gold. She and a classmate wrote a funded mini-grant proposal to study how ice was related to erosion. While not on the frozen creek, Maggie worked as a student employee with the NASA Science Activation Program’s Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) team at the International Arctic Research Center, during which she trained teachers and mentored students at Alaska’s first-ever Student Research Symposium in 2022. Maggie also wrote an article about the symposium, published on the University of Alaska Fairbanks News page: [Hidden Content] When the ice melted and the symposium ended, Maggie wanted to study the freshwater habitats of the Creek using GLOBE hydrosphere protocols, so she wrote another proposal. Maggie got a full scholarship and grant funding through Biomedical Learning and Student Training (BLaST), supported by the National Institutes of Health. Her work earned recognition in the US Fish and Wildlife Service story, “Natural Flows Return to Cripple Creek” and honors as the December 2023/January 2024 BLaST Scientist of the Month. The story does not stop there. In May, 2024, Maggie House graduated with a Bachelor of Science degree and received the first-ever GLOBE internship at the Fairbanks Soil and Water Conservation District, where Maggie House leads the summer Youth for Habitat program for middle school students. Today, you can find Maggie in Cripple Creek near Fairbanks, Alaska, teaching students to learn science by doing science. “I have a firm belief that the health of our environment is intertwined with the health of humans. I am interested in making science-related issues more understandable, for everyone to be a part of their local community. In my future, I see myself continuing to work towards strengthening the relationship between humans and nature and promoting the conservation of our dependence on one another.” – Maggie House Arctic and Earth SIGNs created the conditions for Maggie as an undergraduate student to collect OpenSource GLOBE data that contributed to local solutions, to be awarded funding to pursue actionable research, and to be a leader for educators and future learners. Maggie’s data on ice conditions informed the engineering redesign of the Cripple Creek stream restoration project. Her success in using GLOBE protocols and culturally responsive research methods modeled by Arctic and Earth SIGNs gave her the confidence to write a research proposal and be awarded a full undergraduate research scholarship. Maggie was the first person in the world to monitor aquatic invertebrates in Cripple Creek just three weeks after flow was restored to the creek after 85 years. In Arctic and Earth SIGNs, environmental stewardship is a culminating part of the Learning Framework. Now, Maggie leads the stewardship of salmon habitat in Cripple Creek and mentors middle school youth to pursue STEM fields as a GLOBE trainer and mentor. Maggie’s story matters because one person, with a Science Activation support network and a focus on real-world environmental issues, can make a difference. Arctic & Earth SIGNs is supported by NASA under cooperative agreement award number NNX16AC52A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content] NASA Science Activation Program participant alumna Maggie House leads youth in GLOBE macroinvertebrate identification at an intergenerational workshop in June, 2024, using a microscope she purchased with her grant funds. Christi Buffington Share Details Last Updated Jul 30, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Students to Get Involved Science Activation Explore More 2 min read PLACES team publishes blog post on NextGenScience Blog Article 22 hours ago 5 min read NASA’s ICON Mission Ends with Several Ionospheric Breakthroughs Article 6 days ago 8 min read The Earth Observer Editor’s Corner: Summer 2024 NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its… Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  13. 5 min read NASA’s DART Mission Sheds New Light on Target Binary Asteroid System The various geological features observed on Didymos helped researchers tell the story of Didymos’ origins. The asteroid’s triangular ridge (first panel from left), and the so-called smooth region, and its likely older, rougher “highland” region (second panel from left) can be explained through a combination of slope processes controlled by elevation (third panel from left). The fourth panel shows the effects of spin-up disruption that Didymos likely underwent to form Dimorphos. Credit: Johns Hopkins APL/Olivier Barnouin In studying data collected from NASA’s DART (Double Asteroid Redirection Test) mission, which in 2022 sent a spacecraft to intentionally collide with the asteroid moonlet Dimorphos, the mission’s science team has discovered new information on the origins of the target binary asteroid system and why the DART spacecraft was so effective in shifting Dimorphos’ orbit. In five recently published papers in Nature Communications, the team explored the geology of the binary asteroid system, comprising moonlet Dimorphos and parent asteroid Didymos, to characterize its origin and evolution and constrain its physical characteristics. “These findings give us new insights into the ways that asteroids can change over time,” said Thomas Statler, lead scientist for Solar System Small Bodies at NASA Headquarters in Washington. “This is important not just for understanding the near-Earth objects that are the focus of planetary defense, but also for our ability to read the history of our Solar System from these remnants of planet formation. This is just part of the wealth of new knowledge we’ve gained from DART.” Olivier Barnouin and Ronald-Louis Ballouz of Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, led a paper that analyzed the geology of both asteroids and drew conclusions about their surface materials and interior properties. From images captured by DART and its accompanying LICIACube cubesat – contributed by the Italian Space Agency (ASI), the team observed the smaller asteroid Dimorphos’ topography, which featured boulders of varying sizes. In comparison, the larger asteroid Didymos was smoother at lower elevations, though rocky at higher elevations, with more craters than Dimorphos. The authors inferred that Dimorphos likely spun off from Didymos in a large mass shedding event. There are natural processes that can accelerate the spins of small asteroids, and there is growing evidence that these processes may be responsible for re-shaping these bodies or even forcing material to be spun off their surfaces. Analysis suggested that both Didymos and Dimorphos have weak surface characteristics, which led the team to posit that Didymos has a surface age 40–130 times older than Dimorphos, with the former estimated to be 12.5 million years and the latter less than 300,000 years old. The low surface strength of Dimorphos likely contributed to DART’s significant impact on its orbit. “The images and data that DART collected at the Didymos system provided a unique opportunity for a close-up geological look of a near-Earth asteroid binary system,” said Barnouin. “From these images alone, we were able to infer a great deal of information on geophysical properties of both Didymos and Dimorphos and expand our understanding on the formation of these two asteroids. We also better understand why DART was so effective in moving Dimorphos.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Based on the internal and surface properties described in Barnouin et al. (2024), this video demonstrates how the spin-up of asteroid Didymos could have led to the growth of its equatorial ridge and the formation of the smaller asteroid Dimorphos, seen orbiting the former near the end of the clip. Particles are ******** according to their speeds, with the scale shown at the top, along with the continually changing spin ******* of Didymos. Credit: University of Michigan/Yun Zhang and Johns Hopkins APL/Olivier Barnouin Maurizio Pajola, of the National Institute for Astrophysics (INAF) in Rome, and co-authors led a paper comparing the shapes and sizes of the various boulders and their distribution patterns on the two asteroids’ surfaces. They determined the physical characteristics of Dimorphos indicate it formed in stages, likely of material inherited from its parent asteroid Didymos. That conclusion reinforces the prevailing theory that some binary asteroid systems arise from shed remnants of a larger primary asteroid accumulating into a new asteroid moonlet. Alice Lucchetti, also of INAF, and colleagues found that thermal fatigue — the gradual weakening and cracking of a material caused by heat — could rapidly break up boulders on the surface of Dimorphos, generating surface lines and altering the physical characteristics of this type of asteroid more quickly than previously thought. The DART mission was likely the first observation of such a phenomenon on this type of asteroid. Supervised by researcher Naomi Murdoch of ISAE-SUPAERO in Toulouse, France, and colleagues, a paper led by students Jeanne Bigot and Pauline Lombardo determined Didymos’ bearing capacity — the surface’s ability to support applied loads — to be at least 1,000 times lower than that of dry sand on Earth or lunar soil. This is considered an important parameter for understanding and predicting the response of a surface, including for the purposes of displacing an asteroid. Colas Robin, also of ISAE-SUPAERO, and co-authors analyzed the surface boulders on Dimorphos, comparing them with those on other rubble pile asteroids, including Itokawa, Ryugu and Bennu. The researchers found the boulders shared similar characteristics, suggesting all these types of asteroids formed and evolved in a similar fashion. The team also noted that the elongated nature of the boulders around the DART impact site implies that they were likely formed through impact processing. These latest findings form a more robust overview of the origins of the Didymos system and add to the understanding of how such planetary bodies were formed. As ESA’s (********* Space Agency) Hera mission prepares to revisit DART’s collision site in 2026 to further analyze the aftermath of the first-ever planetary defense test, this research provides a series of tests for what Hera will find and contributes to current and future exploration missions while bolstering planetary defense capabilities. Johns Hopkins APL managed the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. NASA provided support for the mission from several centers, including the Jet Propulsion Laboratory in Southern California, Goddard Space Flight Center in Greenbelt, Maryland, Johnson Space Center in Houston, Glenn Research Center in Cleveland, and Langley Research Center in Hampton, Virginia. For more information about the DART mission: [Hidden Content] News Media Contacts Karen Fox / Alana Johnson Headquarters, Washington 202-358-1600 *****@*****.tld / alana.r*****@*****.tld Facebook logo @NASA@Asteroid Watch @NASA@AsteroidWatch Instagram logo @NASA Linkedin logo @NASA Share Details Last Updated Jul 30, 2024 Related Terms Asteroids DART (Double Asteroid Redirection Test) Missions Planetary Science Planetary Science Division Science Mission Directorate The Solar System Keep Exploring Discover More Topics From NASA Planetary Science Early Career Workshop Asteroids Solar System View the full article
  14. The International Space Station pictured from the SpaceX Crew Dragon during a fly around of the orbiting laboratory. Credit: NASA NASA will broadcast groundbreaking discoveries, benefits for humanity, and how the agency and its commercial and international partners are maximizing research and development in orbit from the 13th annual International Space Station Research and Development Conference. The conference runs Monday through Thursday, Aug. 1, in Boston. The full conference agenda is available online. NASA will stream live coverage of select panels on NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media. NASA’s coverage is as follows (all times Eastern): Tuesday, July 30 9 a.m. – Igniting Innovation Keynote with the following participants: Diana Ly, manager, deputy director, Biological and Physical Sciences, NASA Headquarters Michael Roberts, chief scientific officer, International Space Station National Laboratory 9:35 a.m. – NASA’s Expedition 71 astronauts will discuss research from aboard the orbiting space station laboratory with the following participants: Mike Barratt Matt Dominick Jeanette Epps Tracy C. Dyson Wednesday, July 31 12 p.m. – Keynote address with the following participant: NASA Associate Administrator Jim Free 1:45 p.m. – Lightning: The Power of Science in Low Earth Orbit talk with the following participant: Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters 4:40 p.m. – Low Earth Orbit Research Continuity panel with the following participants: Robyn Gatens, director, International Space Station Program, NASA Headquarters Kirt Costello, utilization manager, Low Earth Orbit Development Program, NASA Johnson Ryan Prouty, manager, International Space Station Research Integration Office, NASA Johnson Thursday, Aug. 1 8:40 a.m. – International Space Station International Partners panel with the following participants: Dana Weigel, manager, International Space Station Program, NASA Johnson Dr. Masaki Shirakawa, director, ********* Experiment Module Utilization Center, JAXA (Japan Aerospace Exploration Agency) Fabio Caramelli, manager, Space Rider System Payload and Exploitation, ESA (********* Space Agency) Mathieu Caron, director, Astronauts, Life Sciences and Space Medicine, CSA (********* Space Agency) Hazzaa Al Monsoori, chief, Astronaut Office, ******* ***** Emirates Luca Di Fino, utilization manager, International Space Station Program, Agenzia Spaziale Italiana 10:15 a.m. – Accessibility to Low Earth Orbit panel with the following participants: Brittany Brown, director, digital communications, Office of Communications, NASA Headquarters Jessica Gagen, scientist and educator, Miss ******* Kingdom 2024 Eric Ingram, chairman and chief strategy officer, SCOUT Space, Inc. John Shoffner, founder, Perseid Foundation 12:15 p.m. – Keynote address with the following participant: Steve Bowen, NASA astronaut The International Space Station Research and Development Conference is hosted by the Center for the Advancement of Science in Space and the ********* Astronautical Society, in cooperation with NASA, and brings together leaders from industry, academia, and government. With more than 23 years of continuously crewed operations, the space station is a unique scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations not possible on Earth. Crews living aboard the station have ********* more than 3,300 experiments in microgravity for thousands of researchers on Earth. The space station also supports space commerce, from commercial crew and cargo partnerships to commercial research and national lab research. Data collected from these activities helps set standards for future commercial stations. Get updates about the science conducted aboard the space station on X at @ISS_Research. Learn more about conducting research in microgravity at: [Hidden Content] -end- Joshua Finch / Jimi Russell Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p*****@*****.tld Patrick O’Neill International Space Station National Laboratory 904-806-0035 *****@*****.tld Share Details Last Updated Jul 29, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)International Space Station DivisionISS Research View the full article
  15. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4257-4258: A Little Nudge on Kings Canyon This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4255 (2024-07-26 05:09:58 UTC). NASA/JPL-Caltech Earth planning date: Friday, July 26, 2024 Today’s 2-sol weekend plan is our first taste of a new location for a potential sampling campaign. We call today’s plan type: Drill Sol 1 – triage contact science. We arrived this morning to a lovely new workspace. The science team has been eagerly observing these lighter-toned rocks first from orbital data, then from our drive direction imaging as we approached them, and now they are right in front of us! Because the science team had been contemplating the possibility of sampling these rocks, the drive that we planned on Wednesday ended in just the right orientation in case the team does decide to drill here. Variables that matter are the rover roll and pitch – so that we can both drill the rock safely but also then deliver sample to our two internal instruments, CheMin and SAM. Additionally, the rover heading needs to be just right so that we can communicate clearly with Earth – perhaps for several weeks if we remain for a campaign! We have specially certified Rover Planners called Sampling Campaign Rover Planners (SCaRPs) and they go into action on Drill Sol 1 to confirm that all those special considerations for drilling are met including finding the actual target on the ground that we want to assess. This morning, the SCaRPs swiftly found a great target and we named it “Kings Canyon.” Kings Canyon National Park is in the southern Sierra Nevada range in California. Kings Canyon itself is a glacially carved canyon more than a mile deep! The national park also contains some of the world’s largest stands of Giant Sequoia trees. The Drill Sol 1 plan has two purposes – first to determine if our target, Kings Canyon, meets the science teams criteria for sampling – for example, is it compositionally interesting? The second objective is to determine if the rock and specific target, are safe to drill; can it handle the forces from the drill, for example. We call this activity a “drill preload test.” Therefore, the primary activities in today’s plan are the preload test and contact science on Kings Canyon – we will first brush the target to remove surface dust and then take close-up imaging with our MAHLI instrument and compositional data with our APXS instrument. In anticipation of a notional full drill on Monday, today’s team was very ************* with the amount of power we used. This meant limiting our remote sensing observations to only those that the team thought were most important to get down timely to support a drill campaign. We’ll use our ChemCam instrument to also study Kings Canyon, ChemCam provides complementary compositional data to the APXS observations. Together these observations will help inform the science about whether they want to proceed with sampling. Today’s plan also includes our typical environmental monitoring observations that we take at a regular cadence. Hope your weekend is as busy and fun as Curiosity’s! Written by Elena Amador-French, Science Operations Coordinator at NASA’s Jet Propulsion Laboratory Share Details Last Updated Jul 29, 2024 Related Terms Blogs Explore More 2 min read Sols 4255-4256: Just Passing Through Article 23 mins ago 2 min read Sols 4253-4254: Pit Stop for Contact Science Article 6 days ago 3 min read Sols 4250-4252: So Many Rocks, So Little Time Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  16. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4255-4256: Just Passing Through Navcam Left image of our stowed arm turret, including the drill as it rests between drill campaigns NASA/JPL-Caltech Earth planning date: Wednesday, July 24, 2024 Happy Wednesday, terrestrials! We wrapped up our Mammoth Lakes drill campaign only three weeks ago and are already looking for our next drill site. This will be the last drill campaign in the Gediz Vallis region, an area on Mars the Curiosity team has had their eyes on since sol 0, just under 12 years ago! This upcoming campaign is even more exciting after the elemental sulfur we found at Mammoth Lakes. And while sulfur on its own doesn’t smell, I’ve always wondered… what does Mars smell like? Finding ourselves less than a meter from our hopeful end-of-drive on Monday, we started on a very familiar plan: Starting with an arm backbone for removing dust and using APXS to investigate a bedrock target named “Russell Pass,” placing the arm out of the way for imaging, spending just over an hour on Mastcam imaging and ChemCam LIBS on Russell Pass, then one more arm backbone for MAHLI images of Russell Pass, and finally a drive in the afternoon. These plans, dubbed “touch-and-go” plans, are usually busy at the start and slow at the end. Our drive this time is planned to go ~10 meters almost perfectly east and leaving our heading almost perfectly west. If on Friday, our wheels are solidly on the Martian ground and there is a flat-enough bedrock surface to place our drill, we might be staying put for another two weeks while we try and collect another Gediz Vallis channel sample. And since we drive backwards with the arm taking up the rear, we might even have a workspace we’ve already driven over – hopefully exposing some internal bedrock even before drilling. Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems Share Details Last Updated Jul 29, 2024 Related Terms Blogs Explore More 3 min read Sols 4257-4258: A Little Nudge on Kings Canyon Article 15 mins ago 2 min read Sols 4253-4254: Pit Stop for Contact Science Article 6 days ago 3 min read Sols 4250-4252: So Many Rocks, So Little Time Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  17. Long before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, some believed a deep layer of dust covered it that would ******** any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes and grainy low-resolution images of the Moon’s far side obtained in 1959 by the ******* Luna 3 robotic spacecraft. On July 28, 1964, Ranger 7 launched toward the Moon, and three days later returned not only the first images of the Moon taken by an ********* spacecraft but also the first high resolution close-up photographs of the lunar surface. The mission marked a turning point in America’s lunar exploration program, taking the country one step closer to a human Moon landing. Left: Block I Ranger 1 spacecraft under assembly at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Middle: Block II Ranger spacecraft, showing the ******-and-white spherical landing capsule. Right: Block III Ranger 7 spacecraft under assembly at JPL. The Ranger program, initiated in 1960 and managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, sought to acquire the first high resolution close-up images of the lunar surface. The program consisted of three phases of increasing complexity. The first phase of the program, designated “Block I,” intended to test the Atlas-Agena launch vehicle by placing a Ranger spacecraft in a highly elliptical Earth orbit where its equipment could be tested. The second “Block II” phase built on the lessons of Block I to send three spacecraft to the Moon to collect images and data and transmit them back to Earth. Each Block II Ranger carried a television camera for collecting images, a gamma-ray spectrometer for studying the minerals in the lunar rocks and soil, and a radar altimeter for studying lunar topography. These spacecraft carried a capsule, encased in balsa wood to protect it from the impact of landing, containing a seismometer and transmitter that would be able to operate for up to 30 days after being dropped on the lunar surface. The final “Block III” phase consisted of four spacecraft that each carried a high-resolution imaging system consisting of six television cameras with wide- and narrow-angle capabilities. They could take 300 pictures per minute. The Block I and II Rangers met with limited success. Neither Ranger 1 nor 2 left low Earth orbit due to booster problems. Ranger 3, the first Block II spacecraft, missed the Moon by 22,000 miles and sailed on into solar orbit, returning no photographs but taking the first measurements of the interplanetary gamma ray flux. Ranger 4 has the distinction as the first ********* spacecraft to impact the Moon, and on its far side to boot, but due to a power ******** in its central computer could not return any images or data. Ranger 5 missed the Moon by 450 miles but also ******* to return images due to a power ******** and entered solar orbit. None of the Block II Rangers delivered their seismometer-carrying capsules to the Moon’s surface. Ranger 6, the first Block III spacecraft, successfully impacted on the Moon in January 1964, but its television system ******* to return any images due to a short circuit. NASA and JPL delayed the next mission until a thorough investigation identified the source of the problem and engineers completed corrective actions. All hopes rested on Ranger 7 to redeem the program. Left: Schematic diagram of a Block III Ranger, showing its major components. Middle: The television camera system aboard Ranger 7. Right: Launch of Ranger 7. On July 28, 1964, Ranger 7 launched from Cape Canaveral, Florida. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft successfully carried out a mid-course correction, and on July 31, Ranger 7 reached the Moon. This time, the spacecraft’s cameras turned on as planned. During its final 17 minutes of flight, the spacecraft sent back 4,308 images of the lunar surface. The last image, taken 2.3 seconds before Ranger 7 impacted at 1.62 miles per second, had a resolution of just 15 inches. Scientists renamed the area where it crashed – between Mare Nubium and Oceanus Procellarum – as Mare Cognitum, ****** for “The Known Sea,” to commemorate the first spot on the Moon seen close-up. Left: Ranger 7’s first image from an altitude of 1,311 miles – the large crater at center right is the 67-mile-wide Alphonsus. Middle: Ranger 7 image from an altitude of 352 miles. Right: Ranger 7’s final image, taken at an altitude of 1,600 feet. Left: Impact sites of Rangers 7, 8, and 9. Middle: The Ranger 7 impact crater photographed during the Apollo 16 mission in 1972. Right: Lunar Reconnaissance Orbiter image of the Ranger 7 impact crater, taken in 2010 at a low sun angle. Two more Ranger missions followed. Ranger 8 returned more than 7,000 images of the Moon. NASA and JPL broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its ****** site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing. Just under five years after Ranger 7 returned its historic images, Apollo 11 landed the first humans on the Moon. Enjoy a brief video about Ranger 7, or a more detailed video of the entire mission. Explore More 9 min read 25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory Article 5 days ago 11 min read 45 Years Ago: Space Shuttle Enterprise Completes Launch Pad Checkout Article 5 days ago 5 min read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander Article 1 week ago View the full article
  18. As part of its ongoing web and television modernization efforts, NASA is shifting its digital focus to its on-demand streaming service, NASA+, which has already gained four times more viewership than the agency’s traditional cable channel. To streamline how it brings the latest aeronautics, human spaceflight, science, and technology news to the universe, the agency also is preparing to phase out NASA Television, its over-the-air broadcast, in late August. Through NASA+, the agency is continuing its decades long tradition of sharing live events, original content, and the latest news while NASA works to improve life on Earth through innovation, exploration, and discovery for the benefit of all. The free, on-demand streaming service is available to download without a subscription on most major platforms via the NASA App on iOS and Android mobile and tablet devices, as well as streaming media players like Roku, Apple TV, and ***** TV. Users also may stream online at: [Hidden Content] “In a universe where the way we consume information is rapidly changing, NASA+ is helping us inspire and connect with our current generation of explorers: the Artemis Generation,” said Marc Etkind, associate administrator, Office of Communications at NASA Headquarters in Washington. “Through NASA+, we are enhancing the user experience for our audiences in a way that reflects our commitment to reaching new heights, both in space exploration and in media.” Get Ready to Explore: New NASA+ Content Coming Soon NASA+ is set to release new content, including a lineup of new documentaries and behind-the-scenes footage of NASA missions and live events, including: “Planetary Defenders”– NASA’s documentary that delves into the high-stakes world of asteroid detection and planetary defense all for the benefit of humanity. “Our Alien Earth” – This series follows the field work taking place in extreme environments over the world by NASA scientists; work that directly informs NASA missions to discover extraterrestrial life in the universe. “An Ocean in Bloom” – A documentary about a NASA satellite that sheds light on a coastal Floridian community’s battle with souring ocean waters that threaten the town’s fishing industries. In addition, audiences can prepare to see their fan favorites return for more adventures in new series episodes, including: “Other Worlds” Episode 3 – A new addition to NASA’s award-winning series that follows scientists behind the scenes as they uncover new images from the agency’s James Webb Space Telescope. “The ****** of Space” Episode 3 – Follow the personal stories of current and former ****** astronauts, each selected to become part of NASA’s astronaut corps and train for space missions. “Space Out” Season 2 – Turn on, tune in, and space out to relaxing music and stunning ultra-high-definition visuals of our cosmic neighborhood. The streaming platform also includes live event coverage, where people everywhere can watch in real-time as the agency launches science experiments and astronauts to space, and ultimately, the first woman and person of ****** to the Moon under the Artemis campaign. The transition from cable TV to streaming is part of a larger effort to ensure NASA’s content is more accessible, discoverable, and secure for the public. Last year, in addition to NASA+, the agency launched its revamped nasa.gov and science.nasa.gov websites, creating a new homebase for research, climate data, Artemis information, and more. To keep up with the latest news from NASA and learn more about the agency, visit: [Hidden Content] View the full article
  19. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) GAVRT students visiting JPL’s Charles Elachi Mission Control CenterNASA Interested in having a NASA SCaN expert speak to your class or group? The SCaN program is accepting requests for visits (both virtual and in-person) during the coming calendar year. Request a virtual visit below. Request a visit with the SCaN team at: NASA Glenn NASA Goddard NASA’s Jet Propulsion Laboratory Social Media Stay connected with our program on social media. Facebook logo @NASASCaN @NASASCaN Linkedin logo @NASA Share Details Last Updated Jul 29, 2024 Related TermsGeneral View the full article
  20. Learn Home PLACES team publishes blog… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science 2 min read PLACES team publishes blog post on NextGenScience Blog The NASA Science Activation program’s PLACES (Broadening Data Fluency Through the Integration of NASA Assets and Place-Based Learning to Advance Connections, Education, and Stewardship) team – which focuses on supporting educators to implement Place-Based, Data-Rich (PBDR) instruction using NASA assets in their own contexts – recently published a blog post about the PLACES PBDR framework on the NextGenScience blog, On the Same Wavelength. PBDR instruction uses place, data, and science together to create contextually rich, rigorous, and meaningful learning experiences. This first-ever public share of the PLACES framework for PBDR instruction dives into instructional design, pedagogy, assessment, and other topics related to K-12 science education. In practice, PBDR can unfold in a variety of ways. The blog post outlines PBDR instruction from a pedagogical standpoint, shares some examples of what PBDR looks like in practice, shares perspectives of PBDR instruction from pilot study teachers, and details the next steps for the PLACES project. It also offers examples of ways the NASA Science Activation network can implement the framework in their own contexts. The PLACES team hopes that others within the Science Activation community will take up the PBDR framework and provide feedback about how using the framework unfolds. Next steps for the PLACES project will include (1) leading the 3rd professional learning summer institute at the Gulf of Maine Research Institute in August, and (2) integrating materials from the pilot study and year 2 summer institute teachers, feedback from teachers and partners, and learning outcomes as they improve their professional learning experiences. The PLACES team would like to thank the NextGenScience team for their support in publishing the blog post. Please visit the PLACES team website for more information about the PBDR framework. PLACES is supported by NASA under cooperative agreement award number 80NSSC22M0005 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: [Hidden Content] PLACES project team members collecting data on soil moisture using Global Learning and Observations to Benefit the Environment Program protocols. Share Details Last Updated Jul 29, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Science Activation Explore More 5 min read NASA’s ICON Mission Ends with Several Ionospheric Breakthroughs Article 5 days ago 8 min read The Earth Observer Editor’s Corner: Summer 2024 NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its… Article 2 weeks ago 3 min read The Earth Observer’s 35th Anniversary Article 2 weeks ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
  21. NASA/Bill White In this image from May 4, 2017, a rabbit is nearly obscured by grass at NASA’s Kennedy Space Center in Florida. Kennedy shares a border with the Merritt Island Wildlife Refuge, which is home to over 31 mammal species and hundreds of bird, fish, amphibian, and reptile species. Kennedy is responsible for more protected species than any other federal property in the continental ******* States, and there are diverse and varied efforts to protect and preserve ecological systems at the center while simultaneously supporting the NASA mission. Image credit: NASA/Bill White View the full article
  22. Northrop Grumman’s Cygnus space freighter is pictured attached to the Canadarm2 robotic arm ahead of its release from the International Space Station’s Unity module on Tuesday, July 12, 2024. Photo credit: NASA NASA invites the public to participate in virtual activities ahead of the launch of Northrop Grumman’s 21st commercial resupply services mission for the agency. Mission teams are targeting 11:28 a.m. EDT Saturday, Aug. 3, for the launch of the company’s Cygnus cargo spacecraft on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Cygnus will deliver new scientific investigations, food, supplies, and equipment to the crew aboard the International Space Station. Members of the public can register to attend the launch virtually. As a virtual guest, you’ll gain access to curated resources, receive schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. NASA’s live launch coverage will begin at 11:10 a.m. EDT on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media. Learn more about the commercial resupply mission at: View the full article
  23. Daily global average temperature values from MERRA-2 for the years 1980-2022 are shown in white, values for the year 2023 are shown in pink, and values from 2024 through June are shown in red. Daily global temperature values from July 1-July 23, 2024, from GEOS-FP are shown in purple. NASA/Global Modeling and Assimilation Office/Peter Jacobs July 22, 2024, was the hottest day on record, according to a NASA analysis of global daily temperature data. July 21 and 23 of this year also exceeded the previous daily record, set in July 2023. These record-breaking temperatures are part of a long-term warming trend driven by human activities, primarily the emission of greenhouse gases. As part of its mission to expand our understanding of Earth, NASA collects critical long-term observations of our changing planet. “In a year that has been the hottest on record to date, these past two weeks have been particularly brutal,” said NASA Administrator Bill Nelson. “Through our over two dozen Earth-observing satellites and over 60 years of data, NASA is providing critical analyses of how our planet is changing and how local communities can prepare, adapt, and stay safe. We are proud to be part of the Biden-Harris Administration efforts to protect communities from extreme heat.” This preliminary finding comes from data analyses from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System Forward Processing (GEOS-FP) systems, which combine millions of global observations from instruments on land, sea, air, and satellites using atmospheric models. GEOS-FP provides rapid, near-real time weather data, while the MERRA-2 climate reanalysis takes longer but ensures the use of best quality observations. These models are run by the Global Modeling and Assimilation Office (GMAO) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Daily global average temperature values from MERRA-2 for the years 1980-2022 are shown in white, values for the year 2023 are shown in pink, and values from 2024 through June are shown in red. Daily global temperature values from July 1 to 23, 2024, from GEOS-FP are shown in purple. The results agree with an independent analysis from the ********* Union’s Copernicus Earth Observation Programme. While the analyses have small differences, they show broad agreement in the change in temperature over time and hottest days. The latest daily temperature records follow 13 months of consecutive monthly temperature records, according to scientists from NASA’s Goddard Institute for Space Studies in New York. Their analysis was based on the GISTEMP record, which uses surface instrumental data alone and provides a longer-term view of changes in global temperatures at monthly and annual resolutions going back to the late 19th century. Media Contact: Liz Vlock NASA Headquarters, Washington 202-358-1600 *****@*****.tld Share Details Last Updated Jul 29, 2024 EditorJennifer R. MarderLocationGoddard Space Flight Center Related TermsEarthClimate ChangeGoddard Institute for Space StudiesGoddard Space Flight Center View the full article
  24. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Science in Space: July 2024 This time of year, managing heat is on everyone’s mind. Especially now, as May 2024 marked a full year of record-high monthly temperatures – an unprecedented streak, according to scientists from NASA’s Goddard Institute for Space Studies in New York. NASA experts analyze data from thousands of land-, sea-, and sky-based instruments to calculate Earth’s global temperature. Knowing how hot it is helps scientists, health care workers, and public officials plan for and respond to the heat’s effects on people and infrastructure. Crew members on the International Space Station deal with a different type of heat – that generated by electronics, life support systems, and other equipment. Managing this heat is essential to the operation of the spacecraft and the health and safety of its occupants. Taking out the heat Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Packed bed reactors (PBRs) are structures packed with beads of different materials to increase contact between a liquid and a gas flowing through them. They are widely used for many applications, including thermal control or heat management, life support systems, and water filtration and offer low power consumption, compact size, and reliability. Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) continues evaluation of how microgravity affects the performance of different packing media. The material used and the shape and size of the beads all contribute to the effectiveness of heat exchange in a PBR. This investigation could inform the design and operation of these systems in microgravity and on the Moon and Mars and lead to improvements in this technology for applications on Earth such as water purification and cooling systems. Previous investigations, PBRE and PBRE-2, provided fundamental understanding of simultaneous gas and liquid flow through PBRs in microgravity. This improved understanding helps to support development of more efficient and lightweight thermal management and life support systems for future missions. Boiling heat away To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video In this video from the FBCE, as liquid begins to boil, small bubbles form at the heated surface (top of the image) and grow larger over time.NASA As electronic devices add more features, they generate more heat, which becomes increasingly challenging to remove. Flow boiling is a method of thermal management that uses this heat to boil a moving liquid and generate vapor bubbles that lift the heat from the surface, then change back to a liquid via condensation. But using boiling for heat management is less efficient in microgravity because, in the absence of buoyancy, bubbles grow larger and remain near the surface. The Flow Boiling and Condensation Experiment (FBCE) tested a model for a flow boiling and condensation facility for the space station. Researchers identified important factors affecting this process in microgravity and how they differ from those on Earth. The findings could help researchers identify ways to improve the operation of these systems in microgravity. This research also led to development of an artificial neural network (ANN) trained on data from the FBCE experiment to predict heat flow and transfer for use in the design and analysis of thermal systems. ANNs are a type of artificial intelligence made of computational units similar to neurons in the nervous systems of living things. NASA astronaut Josh Cassada works on the PFMI-ASCENT investigation.NASA The PFMI-ASCENT investigation found that adding microscopic teeth or rachets to a surface caused more bubbles to form and increased the transfer of heat. This finding helps further improve flow boiling systems used to remove heat from electronics in space. Going with the flow Close-up view of the Capillary Flow Experiment-2 test chamber.NASA Liquids behave differently in space than they do on Earth. Capillary Flow Experiment-2 studied wetting, or a liquid’s ability to spread across a surface, in different container shapes in microgravity. Results showed that models adequately predict liquid flow for various container shapes. These predictions support improved design of systems that process liquids aboard spacecraft, including systems for thermal control. Melissa Gaskill International Space Station Research Communications Team NASA’s Johnson Space Center Search this database of scientific experiments to learn more about those mentioned in this article. Keep Exploring Discover Related Topics Latest News from Space Station Research Humans in Space Space Station Technology Demonstration Station Benefits for Humanity View the full article
  25. NASA’s LRO (Lunar Reconnaissance Orbiter) has twice transmitted a laser pulse to a cookie-sized retroreflector aboard JAXA’s (Japan Aerospace Exploration Agency) SLIM lander on the Moon and received a return signal. As LRO passed 44 miles above SLIM (Smart Lander for Investigating Moon) during two successive orbits on May 24, 2024, it pinged the lander with its laser altimeter instrument as it had done eight times before. But, on these two attempts, the signal bounced back to LRO’s detector. This was an important accomplishment for NASA because the device is not in an optimal position. Retroreflectors are typically secured to the top of landers, giving LRO a 120-degree range of angles to aim toward when sending laser pulses to the approximate location of a retroreflector. However, the SLIM lander had settled on the surface with its top facing sideways, limiting LRO’s range. To boost the chances of reaching their target, the LRO team worked with JAXA to determine the exact location and orientation of SLIM. Then, NASA engineers predicted when LRO’s orbit trajectory would bring it to coordinates that would give it the best chance of reaching SLIM’s retroreflector with the laser beams. SLIM on the lunar surface captured by the LEV-2 (SORA-Q) rover. “LRO’s altimeter wasn’t built for this type of application, so the chances of pinpointing a tiny retroreflector on the Moon’s surface are already low,” said Xiaoli Sun, who led the team that built SLIM’s retroreflector at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as part of a partnership between NASA and JAXA. “For the LRO team to have reached a retroreflector that faces sideways, instead of the sky, shows that these little devices are incredibly resilient,” Sun said. SLIM touched down on the Moon’s surface on Jan. 20. The retroreflector that hitched a ride with the lander, called a Laser Retroreflector Array, is one of the six NASA has sent to the Moon aboard private and public landers, and the second to bounce signal back to LRO’s altimeter. The first time a laser beam was transmitted from LRO to a NASA retroreflector and back was on Dec. 12, 2023, when LRO pinged ISRO’s (Indian Space Research Organisation) Vikram lander. LRO has since exchanged laser pings with Vikram three more times. NASA’s retroreflector has eight quartz corner-cube prisms set into a dome-shaped aluminum frame that is 2 inches wide. With no power or maintenance required, retroreflectors can last on the Moon’s surface for decades and thus provide reliable beacons for future missions. NASA’s Laser Retroreflector Array installed on JAXA’s SLIM lander before launch. The retroreflectors could guide Artemis astronauts to the surface in the dark, for example, or mark the locations of spacecraft already on the surface to help astronauts and uncrewed spacecraft land near them. LRO’s laser altimeter, the only laser instrument orbiting the Moon for now, was designed to map the Moon’s topography to prepare for missions to the surface — not to point to within 1/100th of a degree of a retroreflector, which is what LRO engineers are trying to do with every ping. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities. NASA’s LRO Spots Japan’s Moon Lander New Evidence Adds to Findings Hinting at Network of Caves on Moon NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels By Lonnie Shekhtman NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Nancy Neal Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Jul 29, 2024 Related Terms Artemis Earth’s Moon Goddard Space Flight Center Lunar Discovery & Exploration Program Lunar Reconnaissance Orbiter (LRO) Planetary Science Division Science Mission Directorate The Solar System View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.