Diamond Member SpaceMan 0 Posted August 13 Diamond Member Share Posted August 13 This is the hidden content, please Sign In or Sign Up NASA’s Cold Atom Lab, shown where it’s installed aboard the International Space Station, recently demonstrated the use of a tool called an atom interferometer that can precisely measure gravity and other forces — and has many potential applications in space.NASA/JPL-Caltech Future space missions could use quantum technology to track water on Earth, explore the composition of moons and other planets, or probe mysterious cosmic phenomena. NASA’s Cold Atom Lab, a first-of-its-kind facility aboard the International Space Station, has taken another step toward revolutionizing how quantum science can be used in space. Members of the science team measured subtle vibrations of the space station with one of the lab’s onboard tools — the first time ultra-cold atoms have been employed to detect changes in the surrounding environment in space. The This is the hidden content, please Sign In or Sign Up , which appeared in Nature Communications on Aug. 13, also reports the longest demonstration of the wave-like nature of atoms in freefall in space. The This is the hidden content, please Sign In or Sign Up science team made their measurements with a quantum tool called an atom interferometer, which can precisely measure gravity, magnetic fields, and other forces. Scientists and engineers on Earth use this tool to study the fundamental nature of gravity and advance technologies that aid aircraft and ship navigation. (Cell phones, transistors, and GPS are just a few other major technologies This is the hidden content, please Sign In or Sign Up but do not involve atom interferometry.) Physicists have been eager to apply atom interferometry in space because the microgravity there allows longer measurement times and greater instrument sensitivity, but the exquisitely sensitive equipment has been considered too fragile to function for extended periods without hands-on assistance. The Cold Atom Lab, which is operated remotely from Earth, has now shown it’s possible. “Reaching this milestone was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.” Power of Precision Space-based sensors that can measure gravity with high precision have a wide range of potential applications. For instance, they could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity. This type of measurement is already being performed by the U.S.-******* collaboration This is the hidden content, please Sign In or Sign Up (Gravity Recovery and Climate Experiment Follow-on), which detects slight changes in gravity to track the movement of water and ice on Earth. An atom interferometer could provide additional precision and stability, revealing more detail about surface mass changes. Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance five times more common in the universe than the “regular” matter that composes planets, stars, and everything else we can see. Dark energy is the name given to the unknown driver of the universe’s accelerating expansion. “Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator and co-author of the new study. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.” A Portable Lab NASA’s Cold Atom Lab studies the quantum nature of atoms, the building blocks of our universe, in a place that is out of this world – the International Space Station. This animated explainer explores what quantum science is and why NASA wants to do it in space. Credit: NASA/JPL-Caltech About the size of a minifridge, the Cold Atom Lab This is the hidden content, please Sign In or Sign Up to the space station in 2018 with the goal of advancing quantum science by putting a long-term facility in the microgravity environment of low Earth orbit. The This is the hidden content, please Sign In or Sign Up to almost absolute zero, or ****** 459 degrees Fahrenheit (****** 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study. Quantum properties include sometimes acting like solid particles and sometimes like waves. Scientists don’t know how these building blocks of all matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers. In microgravity, Bose-Einstein condensates can reach colder temperatures and exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the facility enabling precision measurements by harnessing the quantum nature of atoms. Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact. “I expect that space-based atom interferometry will lead to exciting new discoveries and fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and ******* scientists who co-authored the study. More About the Mission A division of Caltech in Pasadena, JPL designed and built Cold Atom Lab, which is sponsored by the This is the hidden content, please Sign In or Sign Up (BPS) division of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. BPS pioneers scientific discovery and enables exploration by using space environments to conduct investigations that are not possible on Earth. Studying biological and physical phenomena under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. To learn more about Cold Atom Lab, visit: This is the hidden content, please Sign In or Sign Up News Media Contact Calla CofieldJet Propulsion Laboratory, Pasadena, Calif.626-808-2469calla.e*****@*****.tld 2024-106 Share Details Last Updated Aug 13, 2024 Related Terms This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up Explore More This is the hidden content, please Sign In or Sign Up /applications/core/interface/js/spacer.png"> 3 min read Station Science Top News: August 9, 2024 Article 21 hours ago This is the hidden content, please Sign In or Sign Up /applications/core/interface/js/spacer.png"> 3 min read Earth Educators Rendezvous with Infiniscope and Tour It At the Earth Educator’s Rendezvous, held July 15-19, 2024, NASA’s Infiniscope project from Arizona State… Article 1 day ago This is the hidden content, please Sign In or Sign Up /applications/core/interface/js/spacer.png"> 2 min read Astro Campers SCoPE Out New Worlds Teachers at Smokey Mountain Elementary School have collaborated with the NASA Science Activation (SciAct) program’s… Article 4 days ago This is the hidden content, please Sign In or Sign Up Link to comment https://hopzone.eu/forums/topic/98207-nasa-nasa-demonstrates-%E2%80%98ultra-cool%E2%80%99-quantum-sensor-for-first-time-in-space/ Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now