Jump to content
  • Sign Up
×
×
  • Create New...

Recommended Posts

  • Diamond Member

Alphonse Sterling (ST13) is co-author on a paper describing CMEs that appear to be initiated by a series of recurrent coronal jets.  The paper is entitled:  “Source Region and Launch Characteristics of Magnetic-arch-blowout Solar Coronal Mass Ejections Driven by Homologous Compact-flare Blowout Jets.”  It is led by Binal Patel, a graduate student of Sterling’s colleague in India, Bhuwan Joshi; Ronald Moore of UAH is also a co-author.  The paper will appear in ApJ shortly, and a preprint is available at

This is the hidden content, please
.

This is the hidden content, please
Pre-eruptive coronal magnetic field configurations of the source region obtained from the NLFFF extrapolations using HMI vector magnetograms before events I–IV. We show the flux rope in blue ****** in each panel. The source region consists of closed bipolar field lines (green), which constrain the underlying flux rope. The flux rope is formed between emerging negative flux (NE ) and positive polarity flux (P2) in the leading part of the AR. The red circles mark the southeastern footpoint location of the flux rope in each panel, which is rooted in the rapidly changing NE region. (a2)–(d2) The flux ropes are shown from side views before events I–IV. (a3)–(d3) An AIA 304 Å image before the respective event is plotted in the background of the flux ropes.

This is the hidden content, please


Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.