Diamond Member SpaceMan 0 Posted July 30 Diamond Member Share Posted July 30 4 min read Repair Kit for NASA’s NICER Mission Heading to Space Station NASA will deliver a patch kit for NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station, on the agency’s Northrop Grumman 21st commercial resupply mission. Astronauts will conduct a spacewalk to complete the repair. Located near the space station’s starboard solar array, This is the hidden content, please Sign In or Sign Up was damaged in May 2023. The mission team delivered the patch kit to This is the hidden content, please Sign In or Sign Up in Houston in May 2024 so it could be prepped and packed for the upcoming This is the hidden content, please Sign In or Sign Up . “It’s incredible that in just one year, we were able to diagnose the problem and then design, build, test, and deliver a solution,” said Steve Kenyon, NICER’s mechanical lead at This is the hidden content, please Sign In or Sign Up in Greenbelt, Maryland. “We’re so excited to see the patches installed during a future spacewalk, return to a more regular operating schedule, and keep doing groundbreaking science.” This is the hidden content, please Sign In or Sign Up This image, obtained June 8, 2018, shows NASA’s NICER (Neutron star Interior Composition Explorer) on the International Space Station, where it studies neutron stars and other X-ray sources. NICER is about the size of a washing machine. The sunshades of its X-ray concentrators are visible as an array of circular features. NASA This is the hidden content, please Sign In or Sign Up UAE (******* ***** Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the Poisk Mini-Research Module 2 on the space station in July 2023. Photos like this one helped the mission team map the damage to the thermal shields over NICER’s X-ray concentrators. NASA/Sultan Alneyadi This is the hidden content, please Sign In or Sign Up Some of NICER’s damaged thermal shields (circled) are visible in this photograph. NASA/Sultan Alneyadi From its perch on the This is the hidden content, please Sign In or Sign Up , the washing machine-sized NICER studies the X-ray sky. It has This is the hidden content, please Sign In or Sign Up superdense stellar remnants called neutron stars, which contain the densest matter scientists can directly observe. It has also investigated This is the hidden content, please Sign In or Sign Up , observed comets in our solar system, and collected data about Earth’s upper atmosphere. But in This is the hidden content, please Sign In or Sign Up , NICER developed a “light *****,” where unwanted sunlight began entering the telescope. Photos taken aboard the station revealed several areas of damage to NICER’s thermal shields. The shields are 500 times thinner than a human hair and filter out infrared, ultraviolet, and visible light while allowing X-rays to pass through. They cover each of NICER’s 56 X-ray concentrators, sets of 24 nested circular mirrors designed to skip X-rays into corresponding detectors. A sunshade tops each concentrator and shield assembly, with a slight gap in between. The sunshades are segmented by six internal struts, resembling a sliced pie. The largest damage to the shields is around the size of a typical U.S. postage stamp. The other areas are closer in size to pinheads. During the station’s daytime, the damage allows sunlight to reach the detectors, saturating sensors and interfering with NICER’s measurements. The mission team altered their daytime observing strategy to mitigate the effect. The damage does not impact nighttime observations. “NICER wasn’t designed to be serviced or repaired,” said Keith Gendreau, the mission’s principal investigator at Goddard. “It was installed robotically, and we operate it remotely. When we decided to investigate the possibility of patching the largest damaged areas on the thermal shields, we had to come up with a method that would use the existing parts of the telescope and station toolkits. We couldn’t have done it without all the support and collaboration from our colleagues at Johnson and throughout the space station program.” This is the hidden content, please Sign In or Sign Up NICER’s patches are made from aluminum and anodized, or coated, ******. Each is about 2 inches tall. “LCK” indicates the lock position for a tab at the bottom that will hold the patch in place. NASA is sending 12 of these patches to the International Space Station. During a spacewalk, astronauts will insert five into sunshades on the telescope to cover the most significant areas of damage. NASA/Sophia Roberts This is the hidden content, please Sign In or Sign Up NICER’s patches will be inserted into its sunshades, as shown here. The small tab that locks the patch into place is visible beneath it. The carbon composite sunshades cover each of NICER’s 56 X-ray concentrators. Each sunshade is supported by three gold-******** fiberglass mounting feet. NASA/Sophia Roberts This is the hidden content, please Sign In or Sign Up NICER’s thermal shields — the silver film shown here — cover each of the mission’s 56 X-ray concentrators. They block ultraviolet, infrared, and visible light while allowing X-rays to pass through to the mirrors underneath. Each shield is only about 160 nanometers thick, or 500 times thinner than a human hair. The fragile shield is supported by a stainless-steel frame which consists of a pattern of 1/8 inch (3 millimeter) squares in each of the wedges. NASA/Sophia Roberts This is the hidden content, please Sign In or Sign Up NICER has 56 individual X-ray focusing elements, called concentrators, that each contain 24 nested mirrors. Every concentrator delivers X-rays to its own detector. The concentrator shown here is tilted on its side, so the camera is looking into the nested mirrors. X-rays are high-energy light, so they can pass through the atoms of telescope mirrors like those for NASA’s Hubble and James Webb space telescopes. Instead, X-ray observatories use grazing incidence mirrors, where the surfaces are turned on their sides. X-rays skip across their surfaces and into detectors. NASA/Sophia Roberts The solution, in the end, was simple. The team designed patches, each shaped like a piece of pie, that will slide into the sunshades. A tab at the bottom of each patch will turn into the space between the bottom of the sunshade and the top of the thermal shield, keeping it in place. Astronauts will install five patches This is the hidden content, please Sign In or Sign Up . They’ll cover the most significant areas of damage and block the sunlight affecting NICER’s X-ray measurements. The repair kit contains 12 patches in total, allowing for spares if needed. Astronauts will carry the patches in a caddy, a rectangular frame containing two spare sunshades with the patches held inside. “NICER will be the first X-ray telescope in orbit to be serviced by astronauts and only the fourth science observatory to be repaired overall — joining the ranks of missions like NASA’s Hubble Space Telescope,” said Charles Baker, the NICER project systems engineer at Goddard. “It’s been amazing to watch the patch kit come together over the last year. NICER has taught us so many wonderful things about the cosmos, and we’re really looking forward to this next step of its journey.” This is the hidden content, please Sign In or Sign Up The NICER caddy is an aluminum box containing two of the mission’s spare sunshades, which are attached to the bottom. Inside the sunshades, 12 patches are locked into place. Astronauts will take the complete caddy assembly with them during a future spacewalk to address damage to NICER’s thermal shields. They’ll insert five of the patches over the largest areas of damage, which will allow the mission to return to a normal operating status during the station’s daytime. The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. Download high-resolution NICER images and videos By Jeanette KazmierczakNASA’s This is the hidden content, please Sign In or Sign Up Space Flight Center, Greenbelt, Md. Media Contact:Claire Andreoli301-286-1940*****@*****.tldNASA’s Goddard Space Flight Center, Greenbelt, Md. This is the hidden content, please Sign In or Sign Up logo This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up logo This is the hidden content, please Sign In or Sign Up Share Details Last Updated Jul 30, 2024 Related Terms This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up This is the hidden content, please Sign In or Sign Up Link to comment https://hopzone.eu/forums/topic/82350-nasa-repair-kit-for-nasa%E2%80%99s-nicer-mission-heading-to-space-station/ Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now