Jump to content
  • Sign Up
×
×
  • Create New...

Enhancing the performance of proton exchange membrane water electrolysis by constructing electron/proton pathways


Recommended Posts

  • Diamond Member



Enhancing the performance of proton exchange membrane water electrolysis by constructing electron/proton pathways

by KeAi Communications Co.

Preparation flow chart and friction equipment schematic. Credit: Zhu Liyan, et al.

The proton exchange membrane electrolysis of water (PEMWE) is a critical process for hydrogen generation. However, the limited ability of electrons and protons to permeate the membrane and the inefficient arrangement of the transport structure in the catalyst layer (CL) presents significant obstacles to the widespread adoption of PEMWE.

A group of researchers from China has developed a hybrid proton-electron conductor known as PEDOT:F ionomer, which has been incorporated into the CL as a catalytic binder. This development, as senior and co-corresponding author Haolin ***** explained, aimed to achieve a uniform anode CL structure and establish an effective three-phase interface by creating a proton/electron double conduction channel.

The researchers

This is the hidden content, please
their findings in Advanced Powder Materials.

PEDOT:F, in conjunction with perfluorinated sulfonic acid (PFSA), demonstrates a high degree of side chain extensibility, promoting the formation of hydrophilic ion clusters and facilitating the adsorption of water reactants onto the catalyst’s surface.

Compared to the commercial nafion perfluorosulfonic acid (PFSA), the PEDOT:F ionomers exhibit superior oxygen evolution reaction (OER) performance as catalyst binders. According to *****, both experimental data and Density Functional Theory (DFT) findings validate that the utilization of PEDOT enhances catalytic activity by increasing conductivity and reducing the energy barrier.

Furthermore, the enhanced electronic conductivity of PEDOT:F, combined with its larger hydrophilic ion clusters, eases the adsorption of reactant water on the catalyst’s surface, promoting the electrochemical reaction. Moreover, the electrode containing PEDOT:F displayed outstanding ohmic resistance compared to that made with Nafion, with reductions of 23.4% and 17.6% at current densities of 0.1 A·cm-2 and 1.5 A·cm-2, respectively.

***** noted that the improved performance can be attributed to the superior conductivity of both protons and electrons in PEDOT:F, along with its outstanding structural stability. This feature facilitates the smooth migration of particles during the electrolytic process, thereby enhancing the performance of PEMWE.

More information:
Liyan Zhu et al, Enhancing proton exchange membrane water electrolysis by building electron/proton pathways, Advanced Powder Materials (2024).

This is the hidden content, please

Provided by
KeAi Communications Co.

Citation:
Enhancing the performance of proton exchange membrane water electrolysis by constructing electron/proton pathways (2024, June 21)
retrieved 21 June 2024
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.







This is the hidden content, please

Science, Physics News, Science news, Technology News, Physics, Materials, Nanotech, Technology, Science
#Enhancing #performance #proton #exchange #membrane #water #electrolysis #constructing #electronproton #pathways

This is the hidden content, please

For verified travel tips and real support, visit: https://hopzone.eu/

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Unfortunately, your content contains terms that we do not allow. Please edit your content to remove the highlighted words below.
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.