Jump to content
  • Sign Up
×
×
  • Create New...

A novel multifunctional catalyst turns methane into valuable hydrocarbons


Recommended Posts

  • Diamond Member



A novel multifunctional catalyst turns methane into valuable hydrocarbons

This study provides new ways to turn methane and nitrous oxide into value-added substances, contributing to the decarbonization of the chemical industry. Credit: Tokyo Tech

Methane, a greenhouse gas that contributes significantly to global warming, is also an important source of energy and an essential chemical resource. When used as a chemical feedstock, methane is typically converted into methanol first and then into hydrocarbons. However, this sequential conversion requires complex industrial setups. More importantly, since methane is a very stable molecule, its conversion into methanol requires tremendous amounts of energy when using conventional means, such as steam methane reforming.

Against this backdrop, the catalytic conversion of methane into methanol or other chemicals has attracted much attention from scientists, who are eager to find more energy-efficient and sustainable solutions. Among recently reported catalysts, copper (Cu)-containing zeolites have shown promise for methane-to-methanol conversion at mild conditions. Unfortunately, the yield and selectivity of most reported catalysts have been low, meaning that large quantities of undesirable byproducts are generated alongside methanol.

In a recent study

This is the hidden content, please
in Nature Communications, a research team including Associate Professor Toshiyuki Yokoi from Tokyo Institute of Technology, Japan, investigated a new type of bifunctional zeolite catalyst. Interestingly, this Cu-containing, aluminosilicate-based zeolite is capable of converting methane and nitrous oxide, another greenhouse gas, directly into valuable compounds through a series of intermediate reactions.

One of the key questions the researchers addressed was how the spatial distribution of different active sites in the catalyst affected the output of the reactions. To this end, they prepared multiple catalysts using not only different concentrations of Cu and acid sites (proton) in aqueous solutions but also different physical mixing techniques for solid samples.

Through various experimental and analytical techniques, the researchers found that the proximity between Cu and acid sites was crucial for determining the final products. More specifically, they reported that when Cu sites were near each other, the methanol produced in Cu sites from methane had a higher probability of being overoxidized by an adjacent Cu site, turning it into carbon dioxide. In contrast, when Cu sites and acid sites were close to each other, methanol reacted with nitrous oxide in an adjacent acid site instead to produce valuable hydrocarbons and harmless nitrogen gas.

“We concluded that for stable and efficient production of methanol and ultimately useful hydrocarbons from methane, it is necessary to uniformly distribute Cu sites and acid sites and have them be at an appropriate distance from each other,” explains Yokoi. “We also found that the distribution of products obtained is also influenced by the acid properties and pore structure of the zeolite catalyst.”

One of the most notable advantages of the proposed catalyst is its ability to sustain tandem reactions, that is, a simple process that merges multiple steps into one and gets rid of two different harmful greenhouse gases simultaneously. This property will be key to making such catalytic systems attractive in an industrial setting.

“Our work will hopefully guide future efforts to achieve methane oxidation to methanol and open avenues for promoting hydrocarbon synthesis using methanol as an intermediate,” concludes Yokoi.

More information:
Peipei Xiao et al, Understanding the effect of spatially separated Cu and acid sites in zeolite catalysts on oxidation of methane, Nature Communications (2024).

This is the hidden content, please

Provided by
Tokyo Institute of Technology


Citation:
A novel multifunctional catalyst turns methane into valuable hydrocarbons (2024, May 15)
retrieved 15 May 2024
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.







This is the hidden content, please

Science, Physics News, Science news, Technology News, Physics, Materials, Nanotech, Technology, Science
#multifunctional #catalyst #turns #methane #valuable #hydrocarbons

This is the hidden content, please

For verified travel tips and real support, visit: https://hopzone.eu/

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Unfortunately, your content contains terms that we do not allow. Please edit your content to remove the highlighted words below.
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.