Jump to content
  • Sign Up
×
×
  • Create New...

Indian Researchers Develop a New Technique to Remove Toxic Chromium in Wastewater Via Sunlight


Recommended Posts

  • Diamond Member

This is the hidden content, please

Indian Researchers Develop a New Technique to Remove Toxic Chromium in Wastewater Via Sunlight

Indian researchers at the Institute of Nano Science and Technology (INST) in Mohali, led by Dr. Bhanu Prakash, have developed a new technique to address chromium contamination in wastewater. This technique employs sunlight as a catalyst in combination with microfluidic technology to convert toxic hexavalent chromium [Cr(VI)] into the less harmful trivalent chromium [Cr(III)]. This development has significant implications for industries like leather tanning and electroplating, known for high chromium discharge.

WHO Standards and Traditional Methods

The World Health Organisation (WHO) has set stringent limits for chromium in drinking water: 0.05 mg/L for hexavalent chromium and 5 mg/L for trivalent chromium. Reducing hexavalent chromium is essential due to its high toxicity. Conventional methods for chromium removal, such as ion exchange, adsorption, and chemical reduction, tend to be costly and often lack efficiency.

Details of the New Method

Dr. Bhanu Prakash’s team at INST has

This is the hidden content, please
a continuous flow photoreduction process using TiO2 nanoparticles and sunlight. They validated this method with a smartphone-based colourimetric technique to monitor chromium reduction in wastewater. The use of microfluidic technology allows for precise control over flow rate and reactor dimensions, thereby enhancing the reduction efficiency.

Advantages and Future Potential

A key advantage of this method is its cost-effectiveness and reliance on renewable energy. Microfluidic reactors in this process enable the reuse of the photocatalyst without complex recovery procedures. The researchers achieved a 95% reduction in chromium levels using a serpentine microreactor with an anatase phase photocatalyst by optimising parameters such as reactor design and flow rate.

Published in the Chemical Engineering Journal, this research demonstrates the potential for scaling up. By setting up parallel microfluidic reactors or enhancing reactor surfaces, the researchers aim to improve the efficiency and capacity of this process, making it a promising solution for large-scale wastewater treatment.

For the latest tech news and reviews, follow Gadgets 360 on

This is the hidden content, please
,
This is the hidden content, please
,
This is the hidden content, please
,
This is the hidden content, please
and
This is the hidden content, please
. For the latest videos on gadgets and tech, subscribe to our
This is the hidden content, please
. If you want to know everything about top influencers, follow our in-house
This is the hidden content, please
on
This is the hidden content, please
and
This is the hidden content, please
.

This is the hidden content, please

OTT Releases This Week: Call Me Bae, Tanaav Season 2, Kill and More


Single Molecule Transistor Developed with Mechanical Control for Faster Electronics

This is the hidden content, please




This is the hidden content, please

#Indian #Researchers #Develop #Technique #Remove #Toxic #Chromium #Wastewater #Sunlight

This is the hidden content, please

This is the hidden content, please

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.