Jump to content
  • Sign Up
×
×
  • Create New...

Recommended Posts

  • Diamond Member

Missing Photonic Link to Enable All-Silicon ‘Quantum Internet’ Identified by Researchers

Scalable quantum computers and a ‘quantum internet’ using silicon could be much easier to develop using existing technology, thanks to a new study by researchers at Simon Fraser University. In a major breakthrough in the development of quantum technology, the researchers describe their observations of silicon ‘T centre’ photon-spin qubits. The research helps to pave the way for opportunities to create massively scalable quantum computers, as well as the infrastructure for a quantum internet, according to the study.

Earlier, research has suggested that the silicon could be used to make some of the most stable and long-lived qubits in the industry. A quantum computer uses qubits to run multidimensional quantum algorithms, unlike a traditional computer. In addition, the development of quantum computers also requires communication technology that will help link the qubits together at a much larger scale.

Published in

This is the hidden content, please
, the
This is the hidden content, please
describes how T centres, a specific luminescent defect in silicon, can offer a photonic link between qubits. “This work is the first measurement of single T centres in isolation, and actually, the first measurement of any single spin in silicon to be performed with only optical measurements,” said Stephanie Simmons, Canada Research Chair in Silicon Quantum Technologies.

Simmons explained that an emitter like the T centre combines high-performance spin qubits and optical photon generation that can facilitate the production of scalable and distributed quantum computers. These are capable of handling both processing and communications together rather than needing two different quantum technologies, Simmons added.

The T centres can come in handy as they emit light of a wavelength that is currently used in metropolitan fibre communications and telecom networking equipment. “With T centres, you can build quantum processors that inherently communicate with other processors. When your silicon qubit can communicate by emitting photons in the same band used in data centres and fibre networks, you get these same benefits for connecting the millions of qubits needed for quantum computing,” highlighted Simmons.

Researchers believe that drumming up a method to create quantum computing processors using silicon will enable them to use the existing knowledge and infrastructure rather than develop a new industry for quantum manufacturing.


Affiliate links may be automatically generated – see our ethics statement for details.



This is the hidden content, please

quantum computing internet silicon qubits algorithms simon fraser university quantum computers,qubits
#Missing #Photonic #Link #Enable #AllSilicon #Quantum #Internet #Identified #Researchers

This is the hidden content, please


Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.