Jump to content
  • Sign Up
×
×
  • Create New...

Graphene oxide and chitosan sponge found to be ten times more efficient at removing gold from e-waste


Recommended Posts

  • Diamond Member

This is the hidden content, please

Graphene oxide and chitosan sponge found to be ten times more efficient at removing gold from e-waste


SEM image of Au3+ extraction and reduction by GO/Chitosan sponge; Au3+ is shown in yellow. Credit: Kou Yang

A team of chemists and materials scientists at the National University of Singapore, working with colleagues from Manchester University, in the U.K., and Guangdong University of Technology, in China, has developed a type of sponge made of graphene oxide and chitosan, that can be used to extract gold from electronic waste.

In their paper

This is the hidden content, please
in the Proceedings of the National Academy of Sciences, the group describes how they made their sponge and how well it worked during testing.

Prior research has shown that removing gold, silver and other metals from electronic equipment that is no longer useful, as a way to recycle such materials, is a difficult and often ****** business. Quite often it results in low yields and the generation of a variety of toxic pollutants.

In this new study, the research team has found a way to remove the gold in a way that is cheaper and cleaner than conventional methods and much more efficient as well.

The research team chose their materials purposely—both have been used to extract gold from other materials. Also, graphene has a demonstrated ability to absorb ions, and chitosan (a natural biopolymer) is a well-known reducing agent, which in this case was used to catalytically convert gold ions into their solid form.

The two materials were made into a composite by allowing the chitosan to self-assemble on two-dimensional graphene flakes—a process that also resulted in the formation of sites on the material that could bind to gold ions. After the gold ions are absorbed into the graphene, the chitosan converts them into their solid gold state, allowing for easy collection—a process the research team describes as highly efficient.

The team tested their sponge using real e-waste provided by a recycling company. The e-waste came in the form of a solution mixture, which meant it had been ground up with other materials present in the electronic equipment and mixed into a liquid. Measurement prior to treatment showed gold concentrations of 3 ppm.

The newly developed sponge was able to extract approximately 17g/g of Au3+ ions and a little more than 6 g/g of Au+. Such amounts, the team claims, are approximately 10 times that of any other known extraction process.

More information:
Kou Yang et al, Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste, Proceedings of the National Academy of Sciences (2024).

This is the hidden content, please

© 2024 Science X Network

Citation:
Graphene oxide and chitosan sponge found to be ten times more efficient at removing gold from e-waste (2024, October 26)
retrieved 26 October 2024
from

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.




This is the hidden content, please

#Graphene #oxide #chitosan #sponge #ten #times #efficient #removing #gold #ewaste

This is the hidden content, please

This is the hidden content, please

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Vote for the server

    To vote for this server you must login.

    Jim Carrey Flirting GIF

  • Recently Browsing   0 members

    • No registered users viewing this page.

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.