Jump to content
  • Sign Up
×
×
  • Create New...

SpaceMan

Diamond Member
  • Posts

    2023
  • Joined

  • Last visited

    Never
  • Feedback

    0%

Everything posted by SpaceMan

  1. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The NASA 5.2% scale, semi-span version of the High Lift Common Research Model installed in the *******-Dutch Wind Tunnels – Braunschweig Low-Speed Wind Tunnel in Braunschweig, Germany on May 4, 2023. NASA NASA and its international partners are using the same generically shaped wing design to create physical and digital research models to better understand how air moves around an aircraft during takeoff and landing. Various organizations are doing computer modeling with computational tools and conducting wind tunnel tests using the same High Lift Common Research Model (CRM-HL), a NASA-led effort. This ensures the aerospace community is getting accurate answers despite any differences in testing conditions or facilities. What started as a voluntary partnership in 2019 has grown into the CRM-HL ecosystem with 10 partners across five countries. The team is building eight wind tunnel models, which will be tested at eight wind tunnels during the next three years. What we are learning today would take us 10 years to do alone. The partners are using each other’s research for the mutual benefit of all. Melissa Rivers NASA Researcher “What we are learning today would take us 10 years to do alone,” said Melissa Rivers, subproject manager in NASA’s Transformational Tools and Technologies project, which leads the CRM-HL research. “The partners are using each other’s research for the mutual benefit of all.” The team will define and assess common wind tunnel conditions in more than 14 tests across the globe. “Through this research, we are learning about differences that occur when we build and test several identical airplane models in multiple wind tunnels,” Rivers said. Researchers can use data from these wind tunnel tests to then check if the research tools using computational fluid dynamics are accurately predicting the physics of an aircraft. “The computer simulations and computational fluid dynamics tools are key contributions from this international partnership,” said NASA’s Mujeeb Malik, a lead researcher for the project. “The runs [tests] are critical to figuring out what we do not know and determining what we want to test.” The partners are developing a standard way to communicate their data so that everyone can better compare the results from their models and wind tunnel tests. NASA also is developing a cloud-based solution to give each partner access to the data and foster collaboration. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This silent, 20-second video shows a computer simulation of air flowing over a 5.2% scale of NASA's High Lift Common Research Model wing design. The ****** key at lower right indicates the speed of the air.NASA Expanding Collaborations with Common Research Models This high lift research effort builds on the success of a previous Common Research Model effort focused on transonic speeds. Between 2008 and 2014, many organizations built their own versions of NASA’s model. They then tested the models in tunnels around the world. The transonic model helped the community better understand the physics of aircraft at cruise. The current high lift model focuses on the takeoff and landing portions of flight when the aircraft is flying slower than at cruise. Since there are more wind tunnels that can run low-speed tests, more partners can participate in the current collaboration. The partners working on the CRM-HL span five countries – ******* States, ******* Kingdom, France, Germany, and Japan and include: NASA ******* Aerospace Center National Office for Aerospace Studies and Research, the French Aerospace Lab JAXA (Japan Aerospace Exploration Agency) ********* Transonic Wind Tunnel Aerospace Technology Institute Boeing Kawasaki Heavy Industries QinetiQ Airbus Researchers from JAXA (Japan Aerospace Exploration Agency) visited NASA’s Langley Research Center in Hampton, Virginia on November 28, 2023, as part of their collaborations on the High Lift Common Research Model.NASA NASA and JAXA (Japan Aerospace Exploration Agency) researchers check out the 10% scale version of NASA’s High Lift Common Research Model in the 14-by-22-foot subsonic wind tunnel at NASA’s Langley Research Center in Hampton, Virginia on November 28, 2023. In the front row is JAXA’s Yosuke Sugioka, left, NASA’s Courtney Winski, and Andrea Sansica. In the middle row is NASA’s Sarah Langston, left, Melissa Rivers, and Kawasaki Heavy Industry’s Takahiro Hashioka. In the back row is JAXA’s Masataka Kohzai, left, Takahiro Uchiyama, and Mitsuhiro Murayama.NASA Researchers from the National Office for Aerospace Studies and Research (ONERA), the French aerospace lab, joined NASA and Boeing researchers on December 6, 2023, to visit the National Transonic Facility at NASA Langley Research Center in Hampton, Virginia, where the High Lift Common Research Model is mounted for upcoming wind tunnels test. In the front row is NASA’s Courtney Winski, left, Melissa Rivers, and ONERA’s Annabelle Lipinski. In the back row is ONERA’s Frederic Ternoy, left, ONERA’s Sylvain Mouton, and Boeing’s Adam Clark.NASA The inside wiring of the 5.2% scale, semi-span version of the High Lift Common Research Model taken at NASA’s Langley Research Center in Hampton, Virginia on November 22, 2023. NASA Technician Jamie Erway prepares the 5.2% scale, semi-span version of the High Lift Common Research Model for wind tunnel tests at the National Transonic Facility at NASA’s Langley Research Center in Hampton, Virginia on November 22, 2023. NASA The One NASA Boeing Team, a collaborative partnership between NASA and Boeing, meets at NASA’s Langley Research Center in Hampton, Virginia on December 13, 2023, to share information on recent research around the High Lift Common Research Model and collaborate on next steps and the path forward.NASA Informing Community Initiatives Data from the CRM-HL research effort also are driving NASA’s High Lift Prediction Workshop series. The series is sponsored by the Applied Aerodynamics Technical Committee of the ********* Institute of Aeronautics and Astronautics. The workshops are intended to engage the broader aviation community in these efforts and inspire researchers around the world. Another goal of this research is to help realize Certification by Analysis, which supports key objectives of the NASA Computational Fluid Dynamics Vision 2030 Study. NASA, industry, and academia developed the study to lay out a long-term plan for developing future computational capabilities and meeting software and hardware needs for computational fluid dynamics. The aerospace community will require these resources to efficiently makeaccurate predictions of how air moves around an aircraft. This work also informs the analysis and design of aircraft. Certification by Analysis would significantly reduce the amount of flight tests required for an aircraft or engine to meet the requirements for airworthiness. This could save aircraft development programs time and millions of dollars. It could also improve product safety and performance. The Federal Aviation Administration (FAA) sets the requirements for airworthiness. Companies must provide test results to show new aircraft and engines meet the regulations. “Before the FAA would allow this type of certification, the analysis must be as accurate as flight testing,” said Rivers. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 7 min read ARMD Solicitations Article 2 weeks ago 4 min read Winners Announced in Gateways to Blue Skies Aeronautics Competition Article 2 weeks ago 1 min read NASA TACP Team Visits with UCF Students, Faculty Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jun 15, 2024 EditorJim BankeContactDiana Fitzgeralddiana.r*****@*****.tld Related TermsAeronauticsFlight InnovationTransformational Tools TechnologiesTransformative Aeronautics Concepts Program View the full article
  2. 4 Min Read Tropical Solstice Shadows June 20, 2024, marks the summer solstice — the beginning of astronomical summer — in the Northern Hemisphere. Credits: NASA/DSCOVR EPIC Solstices mark the changing of seasons, occur twice a year, and feature the year’s shortest and longest daylight hours – depending on your hemisphere. These extremes in the length of day and night make solstice days more noticeable to many observers than the subtle equality of day and night experienced during equinoxes. Solstices were some of our earliest astronomical observations, celebrated throughout history via many summer and winter celebrations. Solstices occur twice yearly, and in 2024 they arrive on June 20 at 4:50 PM EDT (20:50 UTC), and December 21 at 4:19 AM EST (9:18 UTC). The June solstice marks the moment when the Sun is at its northernmost position in relation to Earth’s equator, and the December solstice marks its southernmost position. The summer solstice occurs on the day when the Sun reaches its highest point at solar noon for regions outside of the tropics, and those observers experience the longest amount of daylight for the year. Conversely, during the winter solstice, the Sun is at its lowest point at solar noon for the year and observers outside of the tropics experience the least amount of daylight- and the longest night – of the year. The June solstice marks the beginning of summer for folks in the Northern Hemisphere and winter for Southern Hemisphere folks, and in December the opposite is true, as a result of the tilt of Earth’s axis of rotation. For example, this means that the Northern Hemisphere receives more direct light from the Sun than the Southern Hemisphere during the June solstice. Earth’s tilt is enough that northern polar regions experience 24-hour sunlight during the June solstice, while southern polar regions experience 24-hour night, deep in Earth’s shadow. That same tilt means that the Earth’s polar regions also experience a reversal of light and shadow half a year later in December, with 24 hours of night in the north and 24 hours of daylight in the south. Depending on how close you are to the poles, these extreme lighting conditions can last for many months, their duration deepening the closer you are to the poles. A presenter from the San Antonio Astronomy Club in Puerto Rico demonstrating some Earth-Sun geometry to a group during a “Zero Shadow Day” event. As Puerto Rico ***** a few degrees south of the Tropic of *******, their two zero shadow days arrive just a few weeks before and after the June solstice. Globes are a handy and practical way to help visualize solstices and equinoxes for large outdoor groups, especially outdoors during sunny days!Credit: Juan Velázquez / San Antonio Astronomy Club While solstice days are very noticeable to observers in mid to high latitudes, that’s not the case for observers in the tropics – areas of Earth found between the Tropic of ******* and the Tropic of Capricorn. Instead, individuals experience two “zero shadow” days per year. These days, with the sun directly overhead at solar noon, objects cast a minimal shadow compared to the rest of the year. If you want to see your own shadow at that moment, you have to jump! The exact date for zero shadow days depends on latitude; observers on the Tropic of ******* (23.5° north of the equator) experience a zero-shadow day on the June solstice, and observers on the Tropic of Capricorn (23.5° south of the equator) get their zero-shadow day on December’s solstice. Observers on the equator experience two zero shadow days, being exactly in between these two lines of latitude; equatorial zero shadow days fall on the March and September equinoxes. There is some serious science that can be done by carefully observing solstice shadows. In approximately 200 BC, Eratosthenes is said to have observed sunlight shining straight down the shaft of a well during high noon on the solstice, near the modern-day Egyptian city of Aswan. Inspired, he compared measurements of solstice shadows between that location and measurements taken north, in the city of Alexandria. By calculating the difference in the lengths of these shadows, along with the distance between the two cities, Eratosthenes calculated a rough early estimate for the circumference of Earth – and also provided further evidence that the Earth is a sphere! Are you having difficulty visualizing solstice lighting and geometry? You can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find more fun activities and resources like this model on NASA’s Wavelength and Energy activity. Originally posted by Dave Prosper: June 2022 Last Updated by Kat Troche: April 2024 Simplified SummaryThe June solstice happens when the Sun is farthest north from the equator, and the December solstice is when it’s farthest south. During the June one, places outside the tropics have the longest day of the year, and during December’s, they have the shortest. In the Northern Hemisphere, June marks the start of summer, while in the Southern Hemisphere, it’s winter, and it’s the opposite in December. This happens because of the axis on which Earth leans. Because of this tilt, places near the North Pole have continuous daylight in June, while places near the South Pole have continuous darkness. In December, it’s the other way around. This goes on for months, depending on how close you are to the poles. People in the tropics, between the Tropic of ******* and the Tropic of Capricorn, don’t see as big of a change in daylight. Instead, they have two days a year where shadows almost disappear because the Sun is directly overhead at noon. If you want to see your shadow, you have to jump! The exact days depend on where you are. Around 200 BC, Eratosthenes noticed the Sun was directly overhead on the solstice in one place, comparing that to another place where it wasn’t overhead, and was able to calculate Earth’s size and shape. View the full article
  3. Boeing’s Starliner spacecraft docked to the Harmony module of the International Space Station on the company’s Orbital Flight Test-2 mission (Credits: NASA) NASA and Boeing will discuss Starliner’s mission and departure from the International Space Station as part of the agency’s Boeing Crew Flight Test in a pre-departure media teleconference at 12 p.m. EDT Tuesday, June 18. NASA, Boeing, and station management teams will evaluate mission requirements and weather conditions at available landing locations in the southwestern U.S. before committing to the spacecraft’s departure from the orbiting laboratory. Participants in the news conference include: Steve Stich, manager, NASA’s Commercial Crew Program Dana Weigel, manager, NASA’s International Space Station Program Mike Lammers, flight director, NASA’s Johnson Space Center in Houston Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the NASA Johnson newsroom no later than 10 a.m., June 18, at 281-483-5111 or *****@*****.tld. To ask questions, media must dial into the teleconference no later than 15 minutes before the start of the event. Audio of the teleconference will stream live on NASA’s website at: [Hidden Content] As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off at 10:52 a.m., June 5, on a ******* Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module at 1:34 p.m., June 6. For NASA’s blog and more information about the mission, visit: [Hidden Content] -end- Josh Finch / Jimi Russell / Claire O’Shea Headquarters, Washington 202-358-1100 *****@*****.tld / *****@*****.tld / claire.a.o’*****@*****.tld Courtney Beasley / Leah Cheshier Johnson Space Center, Houston 281-483-5111 *****@*****.tld / *****@*****.tld View the full article
  4. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) High school and collegiate student teams gathered just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, to participate in the agency’s annual Student Launch competition April 13. Credits: NASA/Charles Beason Over 1,000 students from across the U.S. and Puerto Rico launched high-powered, ******** rockets on April 13, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the agency’s annual Student Launch competition. Teams of middle school, high school, college, and university students were tasked to design, build, and launch a rocket and scientific payload to an altitude between 4,000 and 6,000 feet, while making a successful landing and executing a scientific or engineering payload mission. “These bright students rise to a nine-month challenge that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are the Artemis Generation, the future scientists, engineers, and innovators who will lead us into the future of space exploration.” NASA announced the University of Notre Dame is the overall winner of the agency’s 2024 Student Launch challenge, followed by Iowa State University, and the University of North Carolina at Charlotte. A complete list challenge winners can be found on the agency’s student launch web page. Each year NASA implements a new payload challenge to reflect relevant missions. This year’s payload challenge is inspired by the Artemis missions, which seek to land the first woman and first person of ****** on the Moon. The complete list of award winners are as follows: 2024 Overall Winners First place: University of Notre Dame, Indiana Second place: Iowa State University, Ames Third place: University of North Carolina at Charlotte 3D Printing Award: College Level: First place: University of Tennessee Chattanooga Middle/High School Level: First place: First ******** ******* of Manchester, Manchester, Connecticut Altitude Award College Level: First place: Iowa State University, Ames Middle/High School Level: First place: Morris County 4-H, Califon, New Jersey Best-Looking Rocket Award: College Level: First place: New York University, Brooklyn, New York Middle/High School Level: First place: Notre Dame Academy High School, Los Angeles ********* Institute of Aeronautics and Astronautics Reusable Launch Vehicle Innovative Payload Award: College Level: First place: University of Colorado Boulder Second place: Vanderbilt University, Nashville, Tennessee Third place: Carnegie Mellon, Pittsburgh, Pennsylvania Judge’s Choice Award: Middle/High School Level: First place: Cedar Falls High School, Cedar Falls, Iowa Second place: Young Engineers in Action, LaPalma, California Third place: First ******** ******* of Manchester, Manchester, Connecticut Project Review Award: College Level: First place: University of Florida, Gainesville AIAA Reusable Launch Vehicle Award: College Level: First place: University of Florida, Gainesville Second place: University of North Carolina at Charlotte Third place: University of Notre Dame, Indiana AIAA Rookie Award: College Level: First place: University of Colorado Boulder Safety Award: College Level: First place: University of Notre Dame, Indiana Second place: University of Florida, Gainesville Third place: University of North Carolina at Charlotte Social Media Award: College Level: First place: University of Colorado Boulder Middle/High School Level: First place: Newark Memorial High School, Newark, California STEM Engagement Award: College Level: First place: University of Notre Dame, Indiana Second place: University of North Carolina at Charlotte Third place: New York University, Brooklyn, New York Middle/High School Level: First place: Notre Dame Academy High School, Los Angeles, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Thomas Jefferson High School for Science and Technology, Alexandria, Virginia Service Academy Award: First place: ******* States Air Force Academy, USAF Academy, Colorado Vehicle Design Award: Middle/High School Level: First place: First ******** ******* of Manchester, Manchester, Connecticut Second place: Explorer Post 1010, Rockville, Maryland Third place: Plantation High School, Plantation, Florida Payload Design Award: Middle/High School Level: First place: Young Engineers in Action, LaPalma, California Second place: Cedar Falls High School, Cedar Falls, Iowa Third place: Spring Grove Area High School, Spring Grove, Pennsylvania Student Launch is one of NASA’s nine Artemis Student Challenges, activities which connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars. The competition is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, ********* Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies. To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel. For more information about Student Launch, visit: [Hidden Content] For more information about other NASA challenges, please visit: [Hidden Content] Taylor Goodwin Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 *****@*****.tld Share Details Last Updated Jun 14, 2024 Related TermsMarshall Space Flight Center Explore More 4 min read NASA Announces New System to Aid Disaster Response In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande… Article 1 day ago 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge Article 1 day ago 25 min read The Marshall Star for June 12, 2024 Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  5. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA astronaut and Expedition 64 Flight Engineer Victor Glover reviews procedures on a computer for the Monoclonal Antibodies Protein Crystal Growth (PCG) experiment inside the Harmony module. Each year, ****** Space Week celebrates the achievements of ****** Americans in space-related fields. To kick-off ****** Space Week 2024, NASA is collaborating with the National Space Council for the Beyond the ****** Lines: From Science Fiction to Science Fact forum on Monday, June 17, at 11:30 a.m. EDT at the National Museum of ******** ********* History and Culture in Washington. Participants include Mr. Chirag Parikh, Deputy Assistant to the President and Executive Director, National Space Council; Dr. Quincy Brown, Director of Space STEM and Workforce Policy, White House National Space Council; and other private-sector and government agency leadership. Current and former NASA astronauts will join the Standing on the Shoulders of Giants panel to discuss the past, present, and future of space exploration. The panel will be moderated by the Honorable Charles F. Bolden Jr.\, former administrator of NASA and a former astronaut who flew on four Space Shuttle missions. Participants include: Victor J. Glover, Jr., NASA Astronaut and U.S. Navy Captain Jessica Watkins, NASA Astronaut Yvonne Cagle, NASA Astronaut Leland Melvin, former NASA Astronaut Joan Higginbotham, former NASA Astronaut Additional panels include HERStory, sharing the untold stories of ****** women leaders in space, STEM, arts, diplomacy, and business, and a discussion with young leaders, educators, and scientists about education and career paths for the future of space. Additional event details, including registration and streaming information, can be found at nmaahc.si.edu. View the full article
  6. Representatives from NASA, FEMA, and the planetary defense community participate in the fifth Planetary Defense Interagency Tabletop Exercise on April 2 and 3, 2024, to discuss the nation’s ability to respond effectively to the threat of a potentially hazardous asteroid or comet.Credits: NASA/JHU-APL/Ed Whitman NASA will host a virtual media briefing at 3:30 p.m. EDT, Thursday, June 20, to discuss a new summary of a recent tabletop exercise to simulate national and international responses to a hypothetical asteroid impact threat. The fifth biennial Planetary Defense Interagency Tabletop Exercise was held April 2 and 3, 2024, at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland. NASA’s Planetary Defense Coordination Office, in partnership with FEMA (Federal Emergency Management Agency) and with the assistance of the U.S. Department of State Office of Space Affairs, convened the tabletop exercise to inform and assess our ability as a nation to respond effectively to the threat of a potentially hazardous asteroid or comet. This exercise supports NASA’s planetary defense strategy to protect our planet and continues the agency’s mission to innovate for the benefit of humanity. Video of the briefing will stream live on NASA TV and NASA’s YouTube channel. The following participants will review the history and purpose of the exercise, the scenario encountered during this year’s simulation, and its findings and recommendations: Lindley Johnson, NASA’s Planetary Defense Officer Emeritus, NASA Headquarters, Washington Leviticus “L.A.” Lewis, FEMA detailee to NASA’s Planetary Defense Coordination Office, NASA Headquarters Terik Daly, planetary defense section supervisor, Johns Hopkins Applied Physics Laboratory, Laurel, Maryland To register for the briefing, media must RSVP no later than two hours before the event to Alise Fisher at *****@*****.tld. NASA’s media accreditation policy is available online. While there are no known significant asteroid impact threats for the foreseeable future, hypothetical exercises like this one, which are conducted about every two years, provide valuable insights on how the ******* States could respond effectively if a potential asteroid impact threat is identified. This year’s exercise was the first to include participation by NASA’s international collaborators in planetary defense and the first to have the benefit of actual data from NASA’s successful DART (Double Asteroid Redirection Test) mission, the world’s first in-space technology demonstration for defending Earth against potential asteroid impacts. NASA established the Planetary Defense Coordination Office in 2016 to manage the agency’s ongoing efforts in planetary defense. To learn more about planetary defense at NASA, visit: [Hidden Content] -end- Charles Blue / Karen Fox Headquarters, Washington 202-802-5345 / 202-358-1600 charles.e*****@*****.tld / *****@*****.tld Share Details Last Updated Jun 14, 2024 LocationNASA Headquarters Related TermsPlanetary Defense Coordination OfficePlanetary DefensePlanetary Science DivisionScience & ResearchScience Mission Directorate View the full article
  7. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions. The campaign supports the NASA Student Airborne Research Program for undergraduate interns. Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta) The East Coast flights will take place from June 17-26. Researchers and students will fly multiple times each week in Dynamic Aviation’s King Air B200 aircraft at an altitude of 1,000 feet over Baltimore and Philadelphia as well as Norfolk, Hampton, Hopewell, and Richmond in Virginia. Meanwhile, a NASA P-3 aircraft based out of NASA’s Wallops Flight Facility in Virginia will fly over the same East Coast locations to collect different measurements. The West Coast flights will occur from June 29 – July 2. During the *******, those same aircraft will conduct similar operations over Los Angeles, Imperial Valley, and Tulare Basin in California. The research aircraft will fly at lower altitudes than most commercial planes and will conduct maneuvers including vertical spirals from 1,000 to 10,000 feet, circling over power plants, landfills, and urban areas. They will also occasionally conduct “missed approaches” at local airports, where the aircraft will perform a low-level flyby over a runway to collect samples close to the surface. The aircraft carry instruments that will collect data on a range of greenhouse gases including carbon dioxide and methane, as well as air pollutants such as nitrogen dioxide, formaldehyde, and ozone. One purpose of this campaign is to validate space-based measurements observed by the TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission. Launched on a commercial satellite in April 2023, the TEMPO instrument provides hourly daytime measurements of air pollutants across the ******* States, northern Mexico, and southern Canada. “The goal is that this data we collect will feed into policy decisions that affect air quality and climate in the region,” said Glenn Wolfe, a research scientist and the principal investigator for the campaign at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The B-200 aircraft is owned by Dynamics Aviation, an aircraft company contracted by NASA. For more information about Student Airborne Research Program, visit: [Hidden Content] By Tayler Gilmore NASA’s Goddard Space Flight Center, Greenbelt, Maryland Share Details Last Updated Jun 14, 2024 EditorJennifer R. MarderContactJeremy EggersLocationGoddard Space Flight Center Related TermsEarthAirborne ScienceGoddard Space Flight CenterTropospheric Emissions: Monitoring of Pollution (TEMPO)Wallops Flight Facility Explore More 5 min read Surf, Turf, Above Earth: Students Participate in NASA Field Research Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists,… Article 10 months ago 10 min read A Tale of Three Pollutants Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A… Article 8 months ago 4 min read NASA Scientists Take to the Seas to Study Air Quality Article 1 week ago View the full article
  8. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A Terrier-Improved Orion sounding rocket carrying students experiments for the RockOn! mission successfully launched from NASA’s Wallops Flight Facility Aug. 17, 2023 at 6 a.m. EDT.NASA/ Kyle Hoppes More than 50 student and faculty teams are sending experiments into space as part of NASA’s RockOn and RockSat-C student flight programs. The annual student mission, “RockOn,” is scheduled to launch from Wallops Island, Virginia, on a Terrier-Improved Orion sounding rocket Thursday, June 20, with a launch window that opens at 5:30 a.m. EDT. An introduction to rocketry for college students The RockOn workshop is an introductory flight opportunity for community college and university students. RockOn participants spend a week at NASA’s Wallops Flight Facility, where they are guided through the process of building and launching an experiment aboard a sounding rocket. “RockOn provides students and faculty with authentic, hands-on experiences tied to an actual launch into space from a NASA facility,” said Chris Koehler, on contract with NASA as RockOn’s principal investigator. “These experiences are instrumental in the creation of our next STEM workforce.” RockOn student experiments are placed into canisters to be integrated into the payload.NASA/ Madison Olson Unique & advanced experiments In addition to the RockOn workshop experiments, the rocket will carry student team experiments from six different institutions as part of the RockSat-C program. The RockSat-C experiments are unique to each institution and were created off site. RockSat-C “has been an incredible introduction into the world of NASA and how flight missions are built from start to finish,” said TJ Tomaszewski, student lead for the University of Delaware. “The project started as just a flicker of an idea in students’ minds. After countless hours of design, redesign, and coffee, the fact that we finished an experiment capable of going to space and capable of conducting valuable scientific research makes me so proud of my team and so excited for what’s possible next. Everybody dreams about space, and the fact that we’re going to launch still doesn’t feel real.” Students participating in the 2024 RockSat-C program were able to see the RockOn rocket in the testing facility at Wallops Flight Facility.NASA/ Berit Bland RockSat-C participants include: Temple University, Philadelphia Experiments will utilize X-ray spectrometry, muon detection, and magnetometry to explore the interplay among cosmic phenomena, such as X-rays, cosmic muons, and Earth’s magnetic field, while also quantifying atmospheric methane levels as a function of altitude. Southeastern Louisiana University, Hammond The ION experiment aims to measure the plasma density in the ionosphere. This will be achieved by detecting the upper hybrid resonant frequency using an impedance probe mounted on the outside of the rocket and comparing the results to theoretical models. The secondary experiment, known as the ACC experiment, aims to record the rocket’s re-entry dynamics and measure acceleration in the x, y, and z directions. Old Dominion University, Norfolk, Virginia The Monarch3D team will redesign and improve upon a pre-existing experiment from the previous year’s team that will print in suborbital space. This project uses a custom-built 3D printer made by students at Old Dominion. University of Delaware, Newark Project UDIP-4 will measure the density and temperature of ionospheric electrons as a function of altitude and compare the quality of measurements obtained from different grounding methods. Additionally, the project focuses on developing and testing new CubeSat hardware in preparation for an orbital CubeSat mission named DAPPEr. Stevens Institute of Technology, Hoboken, New Jersey The Atmospheric Inert Gas Retrieval project will develop a payload capable of demonstrating supersonic sample collection at predetermined altitudes and investigating the noble gas fractionation and contamination of the acquired samples. In addition, their payload will test the performance of inexpensive vibration damping materials by recording and isolating launch vibrations using 3D-printed components. Cubes in Space, Virginia Beach, Virginia The Cubes in Space (CiS) project provides students aged 11 to 18 with a unique opportunity to conduct scientific and engineering experiments in space. CiS gives students hands-on experience and a deeper understanding of scientific and engineering principles, preparing them for more complex STEM studies and research in the future. Students develop and design their unique experiments to fit into clear, rigid plastic payload cubes, each about 1.5 inches on a side. Up to 80 of these unique student experiments are integrated into the nose cone of the rocket. Approximately 80 small cubes will be launched as part of the RockOn sounding rocket mission.Courtesy Cubes in Space/Jorge Salazar; used with permission Watch the launch The launch window for the mission is 5:30-9:30 a.m. EDT, Thursday June 20, with a backup day of June 21. The Wallops Visitor Center’s launch viewing area will open at 4:30 a.m. A livestream of the mission will begin 15 minutes before launch on the Wallops YouTube channel. Launch updates also are available via the Wallops Facebook page. These circular areas show where and when people may see the rocket launch in the sky, depending on cloud cover. The different ******** sections indicate the time (in seconds) after liftoff that the sounding rocket may be visible.NASA/ ********** Billie NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency. Share Details Last Updated Jun 14, 2024 EditorAmy BarraContactAmy Barra*****@*****.tldLocationWallops Flight Facility Related TermsWallops Flight FacilityFor Colleges & UniversitiesGoddard Space Flight CenterHeliophysics DivisionSounding RocketsSounding Rockets ProgramSTEM Engagement at NASA Explore More 4 min read Double Header: NASA Sounding Rockets to Launch Student Experiments NASA's Wallops Flight Facility is scheduled to launch two sounding rockets carrying student developed experiments… Article 10 months ago 3 min read Sounding Rocket Takes a Second Look at the Sun Article 6 years ago 4 min read Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions Article 1 month ago View the full article
  9. Earth Observer Earth and Climate Earth Observer Home Editor’s Corner Feature Articles News Science in the News Calendars In Memoriam More Meeting Summaries Archives 22 min read Summary of the Ninth DSCOVR EPIC and NISTAR Science Team Meeting Introduction The ninth Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR] Science Team Meeting (STM) was held virtually October 16–17, 2023. Over 35 scientists attended, most of whom were from NASA’s Goddard Space Flight Center (GSFC), with several participating from other NASA field centers, U.S. universities, and U.S. Department of Energy laboratories. One international participant joined the meeting from Estonia. A full overview of DSCOVR’s Earth-observing instruments was printed in a previous article in The Earth Observer and will not be repeated here. This article provides the highlights of the 2023 meeting. The meeting agenda and full presentations can be downloaded from GSFC’s Aura Validation Data Center. Opening Presentations The opening session consisted of a series of presentations from DSCOVR mission leaders and representatives from GSFC and NASA Headquarters (HQ), who gave updates on the mission and the two Earth-viewing science instruments on board. Alexander Marshak [GSFC—DSCOVR Deputy Project Scientist] opened the meeting. He discussed the agenda for the meeting and mentioned that both Earth science instruments on DSCOVR are functioning normally – see Figure 1. At this time, more than 115 papers related to DSCOVR are listed on the EPIC website. Marshak emphasized the importance of making the Earth Science community more aware of the availability of the various EPIC and NISTAR science data products. Figure 1. Sun-Earth-Vehicle (SEV) angle (red curve) and the distance between Earth and the DSCOVR satellite (blue curve) versus time starting from the DSCOVR launch on February 15, 2015 to April 1, 2024. These two measurements are used to track the location and orientation, respectively, of DSCOVR. The spacecraft changes its location by about 200,000 km (~124,274 mi) over about a 3-month *******, and its SEV gets close to zero (which would correspond to perfect backscattering). The gap around the year 2020 was when DSCOVR was in Safe Mode for an extended *******. Figure credit: Adam Szabo (Original figure by Alexander Marshak, with data provided by Joe Park/NOAA) Adam Szabo [GSFC—DSCOVR Project Scientist] welcomed the STM participants and briefly reported that the spacecraft, located at “L1” – the first of five Lagrange points in the Sun-Earth system – was still in “good health.” The EPIC and NISTAR instruments on DSCOVR continue to return their full science observations. Szabo gave an update on the 2023 Earth Science Senior Review, which DSCOVR successfully passed with overall science scores of ‘Excellent/Very Good.’ The Senior Review Panel unanimously supported the continuation of DSCOVR for the 2024–2026 *******. Thomas Neumann [GSFC, Earth Sciences Division (ESD)—Deputy Director] welcomed meeting participants on behalf of the ESD. Neumann noted the impressive engineering that has led to 8.5 years of operations and counting. He also commended the team on the continued production of important science results from these instruments – with nearly 110 papers in the peer-reviewed literature. Following Neumann’s remarks, Steve Platnick [GSFC, Earth Sciences Division—Deputy Director for Atmospheres] welcomed the members of the DSCOVR ST as well as users of EPIC and NISTAR observations. He thanked NASA HQ for its continued strong interest in the mission. Platnick also expressed his appreciation for the mission team members who have worked hard to maintain operation of the DSCOVR satellite and instruments during this challenging time. Richard Eckman [NASA HQ, Earth Science Division—DSCOVR EPIC/NISTAR Program Scientist] noted that a new call for proposals will be in ROSES-2025 and looks forward to learning about recent accomplishments by ST members, which will be essential in assessing the mission’s performance. Jack Kaye [NASA HQ, Earth Science Division—Associate Director for Research] discussed the NASA research program that studies the Earth, using satellites, aircraft, surface-based measurements, and computer models. The two Earth science instruments on DSCOVR (EPIC and NISTAR) play an important role in the program. He highlighted the uniqueness of the DSCOVR observations from the Sun–Earth “L1” point providing context for other missions and the ability to discern diurnal variations. Updates on DSCOVR Operations The DSCOVR mission components continue to function nominally, with progress on several fronts, including data acquisition, processing, archiving, and release of new versions of several data products. The number of people using the content continues to increase, with a new Science Outreach Team having been put in place to aid users in several aspects of data discovery, access, and user friendliness. Hazem Mahmoud [NASA’s Langley Research Center (LaRC)] discussed the new tools in the Atmospheric Science Data Center (ASDC). He reported on DSCOVR metrics since 2015 and mentioned the significant increase in using ozone (O3) products. He also announced that ASDC is moving to the Amazon Web Services (AWS) cloud. Karin Blank [GSFC] covered the EPIC geolocation algorithm, including the general algorithm framework. She highlighted additional problems that needed to be resolved and detailed the various stages to refine the algorithm, emphasizing the enhancements made to improve geolocation accuracy. Marshall Sutton [GSFC] reported on the DSCOVR Science Operations Center (DSOC) and Level-2 (L2) processing. DSOC is operating nominally. EPIC L1A, L1B, and NISTAR data files are produced daily. EPIC L1 products are processed into L2 science products using the computing power of the NASA Center for Climate Simulations (NCCS). Products include daily data images, including a cloud fraction map, aerosol map, and the anticipated aerosol height image. In addition, Sutton reported that the DSCOVR spacecraft has enough fuel to remain in operation until 2033. EPIC Calibration Alexander Cede [SciGlob] and Ragi Rajagopalan [LiftBlick OG] reported on the latest EPIC calibration version (V23) that includes the new flat field corrections based on the lunar observations from 2023 and an update to the dark count model. The EPIC instrument ******** healthy and shows no change in parameters, e.g., read noise, enhanced or saturated pixels, or hot or warm pixels. The current operational dark count model still describes the dark count in a satisfactory way. Liang-Kang Huang [Science Systems and Applications, Inc. (SSAI)] reported on EPIC’s July 2023 lunar measurements, which filled in the area near diagonal lines of the charged coupled device (CCD) not covered by 2021 and 2022 lunar data. With six short wavelength channels ranging from 317 to 551 nm, the two sets of lunar data are consistent with each other. For the macroscopic flat field corrections, he recommended the six fitted sensitivity change functions of radius and polar angle. Igor Geogdzhaev [NASA’s Goddard Institute for Space Studies (GISS)/Columbia University] reported how continuous EPIC observations provide stable visible and near infrared (NIR) channels compared to the contemporaneous data from Visible Infrared Imaging Radiometer Suite (VIIRS) on NASA’s Suomi National Polar-orbiting Partnership (Suomi NPP) and the NASA–National Oceanic and Atmospheric Administration (NOAA) ****** Polar Satellite System (JPSS) missions. (To date, two JPSS missions have launched, JPSS-1, which is now known as NOAA-20, and JPSS-2, which is now known as NOAA-21.) Analysis of near simultaneous data from EPIC and from the Advanced Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite–R (GOES R) platforms showed a high correlation coefficient, good agreement between dark and bright pixels, and small regression zero intercepts. EPIC moon views were used to derive oxygen (O2) channel reflectance by interpolation of the calibrated non-absorbing channels. Conor Haney [LaRC] reported that the EPIC sensor was intercalibrated against measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua platforms as well as from VIIRS on Suomi NPP and NOAA-20, using ray-matched pair radiances, and was found to be radiometrically stable when tested against two invariant calibration targets: over deep convective clouds over the tropical Pacific (dark target) and over the Libya-4 site located in the Libyan desert in ******* (bright target). The ray-matched and Earth target EPIC gain trends were found to be consistent within 1.1%, and the EPIC sensor degradation was found to be less than 1% over the seven-year record. Preliminary results intercalibrating EPIC with the Advanced Himawari Imager (AHI) on the Japan Aerospace Exploration Agency’s (JAXA) “Himawari–8” Geostationary Meteorological Satellite were also promising when both subsatellite positions were close—i.e., during equinox. NISTAR Status and Science with Its Observations The NISTAR instrument ******** fully functional and continues its uninterrupted data record. The presentations here include more details on specific topics related to NISTAR as well as on efforts to combine information from both EPIC and NISTAR. Steven Lorentz [L-1 Standards and Technology, Inc.] reported that NISTAR has been measuring the irradiance from the Sun-lit Earth in three bands for more than eight years. The bands measure the outgo­ing reflected solar and total radiation from Earth at a limited range of solar angles. These measurements assist researchers in answering questions addressing Earth radiation imbalance and predicting future climate change. NISTAR continues to operate nominally, and the team is monitoring any in-orbit degradation. Lorentz explained the evolution of the NISTAR view angle over time. He also provided NISTAR shortwave (SW) and photodiode (***) intercomparison. NISTAR has proven itself to be an extremely stable instrument – although measurements of the offsets have measurement errors. A relative comparison with the scaled-*** channel implies long-term agreement below a percent with a constant background. Clark Weaver [University of Maryland, College Park (UMD)] discussed updates to a new reflected- SW energy estimate from EPIC. This new product uses generic Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) aircraft observations over homogeneous scenes to spectrally interpolate between the coarse EPIC channels. This approach assumes the spectra from an EPIC pixel is a weighted combination of a solid cloud scene and the underlying (cloud-free) surface. Weaver and his team used a vector discrete ordinate radiative transfer model with a full linearization facility, called VLIDORT, to account for the different viewing/illumination geometry of the sensors. Each pixel residual between EPIC observations at six different wavelengths (between 340 and 780 nm) and the composite high-resolution spectrum from AVIRIS has been reduced by about 50%, since the last report. While the total reflected energy for a single EPIC image can be about 15 W/m2 different than the NISTAR measurement, by 2017 the offset bias was, on average, about 1 W/m2. Andrew Lacis [GISS] said that DSCOVR measurements of Earth’s reflected solar radiation from the “L1” position offer a unique perspective for the continuous monitoring of Earth’s sunlit hemisphere. Six years of EPIC data show the seasonal and diurnal variability of Earth’s planetary albedo – but with no discernible trend. Planetary scale variability, driven by changing patterns in cloud distribution, is seen to occur at all longitudes over a broad range of time scales. The planetary albedo variability is strongly correlated at neighboring longitudes but shows strongly anticorrelated behavior at diametrically distant longitudes. Update on EPIC Products and Science Results EPIC has a suite of data products available. The following subsections summarize content during the DSCOVR STM related to these products. They provide updates on several of the data products and on related algorithm improvements. Total Column Ozone Natalya Kramarova [GSFC] reported on the status of the EPIC total O3 using the V3 algorithm. The absolute calibrations are updated every year using collocated observations from the Ozone Mapping and Profiling Suite (OMPS) on Suomi NPP. EPIC total O3 measurements are routinely compared with independent satellite and ground-based measurements. Retrieved EPIC O3 columns agree within ±5–7 Dobson Units (DU, or 1.5–2.5%) with independent observations, including those from satellites [e.g., Suomi NPP/OMPS, NASA’s Aura/Ozone Monitoring Instrument (OMI), ********* Union’s (EU) Copernicus Sentinel-5 Precursor/TROPOspheric Monitoring Instrument (TROPOMI)], sondes, and ground-based Brewer and Dobson spectrophotometers. The EPIC O3 record is stable and shows no substantial drifts with respect to OMPS. In the future, the EPIC O3 team plans to compare EPIC time resolved O3 measurements with observations from NASA’s Tropospheric Emissions Monitoring of Pollution (TEMPO) and the South Korean Geostationary Environment Monitoring Spectrometer (GEMS) – both in geostationary orbit. (Along with the EU’s Copernicus Sentinel-4 mission, expected to launch in 2024, these three missions form a global geostationary constellation for monitoring air quality on spatial and temporal scales that will help scientists better understand the causes, movement, and effects of air pollution across some of the world’s most populated areas.) Jerrald Ziemke [Morgan State University] explained that tropospheric column O3 is measured over the disk of Earth every 1–2 hours. These measurements are derived by combining EPIC observations with Modern-Era Retrospective Analysis for Research and Applications (MERRA2) assimilated O3 and tropopause fields. These hourly maps are available to the public from the Langley ASDC and extend over eight years from June 2015 to present. The EPIC tropospheric O3 is now indicating post-COVID anomalous decreases of ~3 DU in the Northern Hemisphere for three consecutive years (2020–2022). Similar decreases are present in other satellite tropospheric O3 products as well as OMI tropospheric nitrogen dioxide (NO2), a tropospheric O3 precursor. Algorithm Improvement for Ozone and Sulfur Dioxide Products Kai Yang [UMD] presented the algorithm for retrieving tropospheric O3 from EPIC by estimating the stratosphere–troposphere separation of retrieved O3 profiles. This approach contrasts with the traditional residual method, which relies on the stratospheric O3 fields from independent sources. Validated against the near-coincident O3 sonde measurements, EPIC data biased low by a few DU (up to 5 DU), consistent with EPIC’s reduced sensitivity to O3 in the troposphere. Comparisons with seasonal means of TROPOMI tropospheric O3 show consistent spatial and temporal distributions, with lows and highs from atmospheric motion, pollution, lightning, and biomass burning. Yang also showed EPIC measurements of sulfur dioxide (SO2) from recent volcanic eruptions, including Mauna Loa and Kilauea (Hawaii, U.S., 2022–2023), Sheveluch (Kamchatka, Russia, 2023), Etna (Italy, 2023), Fuego (Guatemala, 2023), Popocatépetl (Mexico, 2023), and Pavlof and Shishaldin (Aleutian Islands, U.S., 2023). Yang reported the maximum SO2 mass loadings detected by EPIC are 430 kt from the 2022 Mauna Loa and Kilauea eruptions and 351 kt from the 2023 Sheveluch eruption. Simon Carn [University of Michigan] showed EPIC observations of major volcanic eruptions in 2022–2023 using the EPIC L2 volcanic SO2 and UV Aerosol Index (UVAI) products to track SO2 and ash emissions. EPIC SO2 and UVAI measurements during the 2023 Sheveluch eruption show the coincident transport of volcanic SO2, ash, and ****** dust across the North Pacific. The high-cadence EPIC UVAI can be used to track the fallout of volcanic ash from eruption clouds, with implications for volcanic hazards. EPIC SO2 measurements during the November 2022 eruption of Mauna Loa volcano are being analyzed in collaboration with the U.S. Geological Survey, who monitored SO2 emissions using ground-based instruments during the eruption. Carn finished by mentioning that EPIC volcanic SO2 algorithm developments are underway including the simultaneous retrieval of volcanic SO2 and ash. Aerosols Myungje Choi [UMD, Baltimore County (UMBC)] presented an update on the EPIC V3 Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm to optimize smoke aerosol models and the inversion process. The retrieved smoke/dust properties showed an improved agreement with long-term, ground-based Aerosol Robotic Network (AERONET) measurements of solar spectral absorption (SSA) and with aerosol layer height (ALH) measurements from the Cloud–Aerosol Lidar with Orthogonal Projection (CALIOP) on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission. (Update: As of the publication of this summary, both CALIPSO and CloudSat have ended operations.) Choi reported that between 60–90% of EPIC SSA retrievals are within ±0.03 of AERONET SSA measurements, and between 56–88% of EPIC ALH retrievals are within ±1km of CALIOP ALH retrievals. He explained that the improved algorithm effectively captures distinct smoke characteristics, e.g., the higher brown carbon (BrC) fraction from ********* wildfires in 2023 and the higher ****** carbon (BC) fraction from agricultural fires over Mexico in June 2023. Sujung Go [UMBC] presented a global climatology analysis of major absorbing aerosol species, represented by BC and BrC in biomass burning smoke as well as hematite and goethite in mineral dust. The analysis is based on the V3 MAIAC EPIC dataset. Observed regional differences in BC vs. BrC concentrations have strong associations with known distributions of fuels and types of biomass burning (e.g., forest wildfire vs. agricultural burning) and with ALH retrievals linking injection heights with ***** radiative power. Regional distributions of the mineral dust components have strong seasonality and agree well with known dust properties from published ground soil samples. Omar Torres [GSFC] reported on the upgrades of the EPIC near-UV aerosol (EPICAERUV) algorithm. The EPICAERUV algorithm’s diurnal cycle of aerosol optical depth compared to the time and space collocated AERONET observations at multiple sites around the world. The analysis shows remarkably close agreement between the two datasets. In addition, Torres presented the first results of an improved UV-VIS inversion algorithm that simultaneously retrieves aerosol layer height, optical depth, and single scattering albedo. Hiren Jethva [Morgan State University] discussed the unique product of absorbing aerosols above clouds (AAC) retrieved from EPIC near-UV observations between 340 and 388 nm. The validation analysis of the retrieved aerosol optical depth over clouds against airborne direct measurements from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign revealed a robust agreement. EPIC’s unique capability of providing near-hourly observations offered an insight into the diurnal variations of regional cloud fraction and AAC over “hotspot” regions. A new and simple method of estimating direct radiative effects of absorbing aerosols above clouds provided a multiyear timeseries dataset, which is consistent with similar estimations from Aura–OMI. Jun Wang [University of Iowa] reported on the development and status of V1 of the L2 EPIC aerosol optical centroid height (AOCH) product – which is now publicly available through ASDC – and on improvements to the AOCH algorithm – which focus on the treatment of surface reflectance and aerosols models. He presented applications of this data product for both climate studies of Sahara dust layer height and air quality studies of surface particulate matter with diameter of 2.5 µm or less (PM2.5). In addition, Wang showed the comparisons of EPIC AOCH data product with those retrieved from TROPOMI and GEMS and discussed ongoing progress to reduce the AOCH data uncertainty that is estimated to be 0.5 km (0.3 mi) over the ocean and 0.8 km (0.5 mi) over land. Clouds Yuekui Yang [GSFC] explained the physical meaning of EPIC cloud effective pressure (CEP) in an “apples-to-apples” comparison with CEP measurements from the Global Ozone Monitoring Experiment 2 (GOME-2) on the ********* Operational Meteorology (MetOp) satellites. The results showed that the two products agreed well. Yaping Zhou [UMBC] showed how current EPIC O2 A-band and B-band use Moon calibrations due to lack of in-flight calibration and other comparable in-space instruments for absolute calibration. This approach is ineffective at detecting small changes in instrument response function (IRF). This study examined the O2 band’s calibration and stability using a unique South Pole location and Radiative Transfer Model (RTM) simulations with in situ soundings and surface spectral albedo and bidirectional reflectance distribution function (BRDF) measurements as input. The results indicate EPIC simulations are within 1% of observations for non-absorption bands, but large discrepancies exist for the O2 A-band (15.63%) and O2 B-band (5.76%). Sensitivity studies show the large discrepancies are unlikely caused by uncertainties in various input, but a small shift (-0.2–0.3 nm) of IRF could account for the model observation discrepancy. On the other hand, observed multiyear trends in O2 band ratios in the South Pole can be explained with orbital shift – which means the instrument is stable. Alfonso Delgado Bonal [UMBC] used the EPIC L2 cloud data to characterize the diurnal cycles of cloud optical thickness. To fully exploit the uniqueness of DSCOVR data, all clouds were separated in three groups depending on their optical thickness: thin (0–3), medium (3–10), and thick (3–25). Bonal explained that there is a predictable pattern for different latitudinal zones that reaches a maximum around noon local time – see Figure 2. It was also shown that that the median is a better measure of central tendency when describing cloud optical thickness. Figure 2. Daytime variability of the median liquid cloud optical thickness over the ocean for different seasons of the year derived using EPIC L2 data. The various ******** curves represent data collected in different seasons of the year. The ****** curve represents the annual average – which is most useful for calculations of cloud optical thickness. Figure credit: Alfonso Delgado Bonal Elizabeth Berry [Atmospheric and Environmental Research (AER)] reported on how coincident observations from EPIC and the Cloud Profiling Radar (CPR) on CloudSat have been used to train a machine learning model to predict cloud vertical structure. A XGBoost decision tree model used input (e.g., EPIC L1B reflectance, L2 Cloud products, and background meteorology) to predict a binary cloud mask on 25 vertical levels. Berry discussed model performance, feature importance, and future improvements. Ocean Robert Frouin [Scripps Institution of Oceanography, University of California] discussed ocean surface radiation products from EPIC data. He reported that surface radiation products were developed to address science questions pertaining to biogeochemical cycling of carbon, nutrients, and oxygen as well as mixed-layer dynamics and circulation. These products include daily averaged downward planar and scalar irradiance and average cosine for total light just below the surface in the EPIC spectral bands centered on 317.5, 325, 340, 388, 443, 551, and 680 nm and integrated values over the photosynthetically active radiation (PAR) and UV-A spectral ranges. The PAR-integrated quantities were evaluated against in situ data collected at sites in the North Atlantic Ocean and Mediterranean Sea. Frouin and his colleagues have also developed, tested, and evaluated an autonomous system for collecting and transmitting continuously spectral UV and visible downward fluxes. Vegetation Yuri Knyazikhin [Boston University] reported on the status of the Vegetation Earth System Data Record (VESDR) and discussed science with vegetation parameters. A new version of the VESDR software was delivered to NCCS and implemented for operational generation of the VESDR product. The new version passed tests of physics (e.g., various relationships between vegetation indices and vegetation parameters derived from the VESDR) and follow regularities reported in literature. Analysis of hotspot signatures derived from EPIC and from the Multiangle Imaging Spectroradiometer (MISR) on Terra over forests in southeastern Democratic Republic of the Congo reaffirms that long-term precipitation decline has had minimal impact on leaf area and leaf optical properties. Jan Pisek [University of Tartu/Tartu Observatory, Estonia] reported on the verification of the previously modeled link between the directional area scattering factor (DASF) from the EPIC VESDR product and foliage clumping with empirical data. The results suggest that DASF can be accurately derived from satellite observations and provide new evidence that the photon recollision probability theory concepts can be successfully applied even at a fairly coarse spatial resolution. Sun Glint Tamás Várnai [UMBC] discussed the EPIC Glint Product as well as impacts of sun glint off ice clouds on other EPIC data products – see Figure 3. The cloud glints come mostly from horizontally oriented ice crystals and have strong impact in EPIC cloud retrievals. Glints increase retrieved cloud fraction, the retrieved cloud optical depth, and cloud height. Várnai also reported that the EPIC glint product is now available at the ASDC. It is expected that glints yield additional new insights about the microphysical and radiative properties of ice clouds. Figure 3. EPIC image taken over Mexico on July 4, 2018. The red, white and blue spot over central Mexico is the result of Sun glint reflecting off high clouds containing ice crystals. EPIC is particularly well suited for studies of ice clouds that cause Sun glint, because unlike most other instruments, it uses a filter wheel to take images at multiple wavelengths, which means the image for each wavelength is obtained at a slightly different time. For example, it takes four minutes to cycle from red to blue. During that time, Earth moves by ~100 km (~62 mi) meaning each image will capture a slightly different scene. Brightness contrasts between images can be used to identify glint signals. Image credit: Tamas Vanai Alexander Kostinski [Michigan Technology University] reported on long-term changes and semi-permanent features, e.g., ocean glitter. They introduced pixel-pinned temporally and conditionally averaged reflectance images, uniquely suited to the EPIC observational circumstances. The preliminary resulting images (maps), averaged over months and conditioned on cover type (land, ocean, or clouds), show seasonal dependence at a glance (e.g., by an apparent extent of polar caps). More EPIC Science Results Guoyong Wen [Morgan State University] discussed spectral properties of the EPIC observations near backscattering, including four cases when the scattering angle reaches about 178° (only 2° from perfect backscattering). The enhancement addresses changes in scattering angle observed in 2020. (Scattering angle is a function of wavelength, because according to Mie scattering theory, the cloud scattering phase function in the glory region is wavelength dependent.) Radiative transfer calculations showed that the change in scattering angles has the largest impact on reflectance in the red and NIR channels at 680 nm and 780 nm and the smallest influence on reflectance in the UV channel at 388 nm – consistent with EPIC observations. The change of global average cloud amount also plays an important role in the reflectance enhancement. Nick Gorkavyi [SSAI] talked about future plans to deploy a wide-angle camera and a multislit spectrometer on the Moon’s surface for whole-Earth observations to complement EPIC observations. Gorkavyi explained that the apparent vibrational movement of Earth in the Moon’s sky complicates observations of Earth. This causes the center of Earth to move in the Moon’s sky in a rectangle, measuring 13.4° × 15.8° with a ******* of 6 years. Jay Herman [UMBC] reported on EPIC O3 and trends from combining Nimbus 7/Solar Backscatter Ultraviolet (SBUV), the SBUV-2 series, and OMPS–Nadir Mapper (NM) data. (OMPS is made up of three instruments: a Nadir Mapper (NM), Nadir Profiler, and Limb Profiler. OMPS NM is a total ozone sensor). Herman compared EPIC O3 data to OMPS NM data, which showed good agreement (especially summer values) for moderate solar zenith angle (SZA). Comparison with long-term O3 time series (1978–2021) revealed that there were trends and latitude dependent O3 turn-around dates (1994–1998). Herman emphasized that global O3 models do not show this effect but rather have only a single turn-around date around 2000. Alexander Radkevich [LaRC] presented a poster that showed a comparative analysis of air quality monitoring by orbital and suborbital NASA missions using the DSCOVR EPIC O3 product as well as Pandora total O3 column retrievals. Comparison of the June 2023 total column O3 from EPIC data to the same periods in previous years revealed a significant – around 50 DU – increase of total O3 column in the areas impacted by the plume from 2023 ********* wildfires. Conclusion At the end of the meeting Alexander Marshak, Jay Herman, and Adam Szabo discussed how to make the EPIC and NISTAR instruments more visible in the community. The EPIC website now allows visitors to observe daily fluctuations of aerosol index, cloud fraction, and the ocean surface – as observed from the “L1” point, nearly one million miles away from Earth! More daily products, (e.g., cloud and aerosol height, total leaf area index, and sunlit leaf area index) will be added soon. The 2023 DSCOVR EPIC and NISTAR Science Team Meeting provided an opportunity to learn the status of DSCOVR’s Earth-observing instruments, EPIC and NISTAR, the status of recently released L2 data products, and the science results being achieved from the “L1” point. As more people use DSCOVR data worldwide, the ST hopes to hear from users and team members at its next meeting. The latest updates from the mission are found on the EPIC website. (UPDATE: The next DSCOVR EPIC and NISTAR STM will be held on October 16–18, 2024. Check the website for more details as the date approaches.) Alexander Marshak NASA’s Goddard Space Flight Center *****@*****.tld Adam Szabo NASA’s Goddard Space Flight Center *****@*****.tld View the full article
  10. This image from NASA’s Lunar Reconnaissance Orbiter shows China’s Chang’e 6 lander in the Apollo basin on the far side of the Moon on June 7, 2024. The lander is the bright dot in the center of the image. The image is about 0.4 miles wide (650 meters); lunar north is up.Credit: NASA/Goddard/Arizona State University NASA’s LRO (Lunar Reconnaissance Orbiter) imaged China’s Chang’e 6 sample return spacecraft on the far side of the Moon on June 7. Chang’e 6 landed on June 1, and when LRO passed over the landing site almost a week later, it acquired an image showing the lander on the rim of an eroded, 55-yard-diameter (about 50 meters) crater. The LRO Camera team computed the landing site coordinates as about 42 degrees south latitude, 206 degrees east longitude, at an elevation of about ****** 3.27 miles (****** 5,256 meters). This before and after animation of LRO images shows the appearance of the Chang’e 6 lander. The increased brightness of the terrain surrounding the lander is due to disturbance from the lander’s engines and is similar to the blast zone seen around other lunar landers. The before image is from March 3, 2022, and the after image is from June 7, 2024.Credit: NASA/Goddard/Arizona State University The Chang’e 6 landing site is situated toward the southern edge of the Apollo basin (about 306 miles or 492 km in diameter, centered at 36.1 degrees south latitude, 208.3 degrees east longitude). Basaltic lava erupted south of Chaffee S crater about 3.1 billion years ago and flowed downhill to the west until it encountered a local topographic high, likely related to a fault. Several wrinkle ridges in this region have deformed and raised the mare surface. The landing site sits about halfway between two of these prominent ridges. This basaltic flow also overlaps a slightly older flow (about 3.3 billion years old), visible further west, but the younger flow is distinct because it has higher iron oxide and titanium dioxide abundances. A regional context map of the Chang’e 6 landing site. ****** differences have been enhanced for clarity. The dark area is a basaltic mare ********; bluer areas of the mare are higher-titanium flows. Contour lines marking 100-meter (about 328 feet) elevation intervals are overlaid to provide a sense of the topography. Image is about 118 miles (190 km) across. Credit: NASA/Goddard/Arizona State University LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities. More on this story from Arizona State University's LRO Camera website Media Contact: Nancy N. Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. Facebook logo @NASAGoddard@NASAMoon@NASASolarSystem @NASAGoddard@NASAMoon@NASASolarSystem Instagram logo @NASAGoddard@NASASolarSystem Share Details Last Updated Jun 14, 2024 EditorMadison OlsonContactNancy N. Jones*****@*****.tldLocationGoddard Space Flight Center Related TermsLunar Reconnaissance Orbiter (LRO)Earth's MoonGoddard Space Flight CenterPlanetary ScienceThe Solar System Explore More 1 min read NASA’s LRO Spots Japan’s Moon Lander Article 5 months ago 2 min read NASA’s LRO Images Intuitive Machine’s Odysseus Lander Article 4 months ago 2 min read NASA’s LRO Finds Photo Op as It Zips Past SKorea’s Danuri Moon Orbiter Article 2 months ago View the full article
  11. Michael Chandler has provided configuration and data management support at Houston’s Johnson Space Center for the last 13 years. After roughly seven years supporting the Exploration Systems Development Division, Chandler transitioned to the Moon to Mars Program Office in 2019. He and his team work to ensure that the baseline for Moon to Mars products, like agreements and documents, is appropriately controlled and that configuration and data management processes are integrated across the office’s six programs – Orion, Gateway, EHP, Space Launch System, Human Landing system, and Exploration Ground Systems. “The most rewarding part of my job is not only the magnitude of what I have the privilege of working on every day, returning humans to the surface of the Moon, but also the experience I get in working with such a diverse group of members of the aerospace community,” said Chandler, a contractor with The Aerospace Corporation. “It’s also so rewarding to work as a team on a common goal and to look forward to the work I do every day!” Portrait of Michael Chandler onsite at Johnson Space Center. NASA/Noah Moran Chandler has been an active member of the Out & Allied Employee Resource Group (OAERG) since 2018 and says his involvement with the group led to some groundbreaking life events. “I was very shy and reticent about revealing who I was until I got involved with Out & Allied,” he said. “I now believe that being ‘out’ is a way to support and encourage others to be themselves.” Chandler learned about OAERG while attending a training about how to be an ally for the LGBTQ+ community. In his first year with the group, he helped organize a panel discussion on allyship and creating safe workplaces. He then became co-chair of OAERG’s Pride Committee, working with ERG colleagues and others to plan the group’s LGBTQ+ Pride Month events and participation in Houston’s annual Pride Parade. “I had a wonderful experience managing events and bringing everyone together for Pride,” he said – efforts that earned him a Trailblazer Award. Chandler said he has grown personally and professionally through his involvement with OAERG. “I was very shy and kind of uptight at the first meeting that I went to, but everyone was so kind and accepting, and I slowly started taking on responsibilities and planning events,” he said. “These activities helped me grow as a communicator and a leader in my regular work and personal life.” Michael Chandler (left) stands with fellow Out & Allied Employee Resource Group members, waiting for the Houston Pride Parade to begin. Image courtesy of Michael Chandler Chandler belongs to other employee resource groups (ERGs) at Johnson to support different communities and find opportunities to collaboratively promote diversity, equity, and inclusion (DEI) at the center, and he encourages others to do the same. “Even if you only participate when you have time, it can lead to knowledge and ways to support other communities that have the same challenges in this world,” he said. Chandler has been impressed with agency and center leadership’s involvement in DEI efforts and support for ERGs to date. He suggested that increased communication around DEI initiatives may help to quell anxieties about the political landscape and developments outside of NASA by reassuring team members that their employer supports them for who they are. He believes that every person at Johnson can help create an inclusive environment by being respectful, listening with an open heart, and joining the ****** to ensure that everyone can be themselves. “The most important thing is that everyone needs to be their true self,” he said. “It’s so rewarding and makes life so much more fun!” View the full article
  12. “I graduated in 2008, so that job market was not super great, and I ended up with this very unusual job working for this guy who thought that he had some new theory of physics that he wanted to work on. And so I was responsible for creating little computer simulations, trying to resemble some version of his ideas. His whole thing was like a quasi-spiritual tool, looking toward science as a rationalization of different spiritual beliefs that he had about a collective consciousness and the interconnectedness of things. “As I worked for him longer and met a bunch of other people who were trying to put various spiritual beliefs on scientific footing, I got interested [and thought] maybe this could be studied as a cultural thing. What’s going on here with the ******* to scientifically explain spiritual beliefs that they have? What’s the dynamic going on there? That’s what led me into eventually going to grad school for anthropology. I studied the way that science gets conceptualized and interpreted to rationalize spiritual and religious beliefs. “I had this sort of unconventional trajectory [to NASA]. I didn’t really set a target on something to pursue it. The other thing that might be surprising is that I’ve been insecure about it at every single stage. You know, there’s the whole impostor syndrome thing, and I didn’t feel like I was qualified to be here because I didn’t have some sort of traditional path or because my educational background looks different than that of most of my colleagues. But I’m now at a place where I’ve come to understand that’s true for everyone.” – Garrett Sadler, Human Factors Researcher, NASA’s Ames Research Center Image Credit: NASA/Bradon Torres Interviewer: NASA/Tahira Allen Check out some of our other Faces of NASA. View the full article
  13. ESA/Hubble & NASA, F. Niederhofe This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars. Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis. NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 ******** behind as an ancient witness to the long-past merger. Text Credit: ********* Space Agency (ESA) View the full article
  14. NASA’s Pegasus barge delivers the SLS (Space Launch System) rocket’s core stage for the 2022 Artemis I mission to the turn basin at Kennedy Space Center in Florida in April 2021. Credits: NASA/Michael Downs Media are invited in late July to NASA’s Kennedy Space Center in Florida to see progress on the agency’s SLS (Space Launch System) Moon rocket as preparations continue for the Artemis II test flight around the Moon. Participants joining the multi-day events will see the arrival and unloading of the 212-foot-tall SLS core stage at the center’s turn basin before it is transported to the nearby Vehicle Assembly Building. The stage will arrive on NASA’s Pegasus barge from the agency’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled. Media also will see the twin pair of solid rocket boosters inside the Rotation, Processing, and Surge Facility at the spaceport, where NASA’s Exploration Ground Systems Program is processing the motor segments in preparation for rocket assembly. NASA and industry subject matter experts will be available to answer questions. At launch, the SLS rocket’s two solid rocket boosters and four RS-25 engines, located at the base of its core stage, will produce 8.8 million pounds of thrust to send the first crewed mission of the Artemis campaign around the Moon. Media interested in participating must apply for credentials at: [Hidden Content] To receive credentials, international media must apply by Friday, June 28, and U.S. citizens must apply by Thursday, July 5. Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the activities when they are finalized. NASA’s media accreditation policy is available online. For questions about accreditation, please email ksc*****@*****.tld. For other questions, please contact Kennedy’s newsroom at: 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese **** Antonia Jaramillo o Messod Bendayan a: *****@*****.tld o *****@*****.tld. The approximately 10-day Artemis II flight will test NASA’s SLS rocket, Orion spacecraft, and ground systems for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of ******, and first international partner astronaut on the Moon. Learn more about Artemis at: www.nasa.gov/artemis/ -end- Rachel Kraft Headquarters, Washington 281-358-1100 rachel.h*****@*****.tld Tiffany Fairley/Antonia Jaramillo Kennedy Space Center, Florida 321-867-2468 *****@*****.tld/*****@*****.tld Share Details Last Updated Jun 14, 2024 LocationNASA Headquarters Related TermsArtemis 2ArtemisHumans in SpaceKennedy Space CenterSpace Launch System (SLS) View the full article
  15. “Don’t let the NASA emblem scare you away. “I was very intimidated by it because it was a childhood dream [to make it to NASA]. I saw a picture of me at Kennedy Space [Center’s] visitor center the last time I went home. I must have been five years old. I always used to tell myself that I wasn’t smart enough. [I assumed you needed to be] a literal rocket scientist, and I have absolutely no STEM [science, technology, engineering, and math] degree whatsoever. “So my advice is, as long as you’re true to who you are, you’re transparent, you’re yourself, and you put the work in, you will get what you want. “And make them tell you no — that was one of the first things I learned. If you don’t ask and you don’t apply, you have your answer. So make them tell you no. If you don’t ask, you’ll never know. “And don’t be intimidated or influenced by an emblem or your perception of what kind of people are behind that emblem. Because now I realize, once I’ve made it to NASA, that it’s nothing like I thought it was. In a lot of ways, it’s better, right? Because I get these opportunities to do things that are not in my primary role to serve others, and in that capacity, it’s serving me. That’s my advice.” — Melissa Coleman, Transportation Officer, Logistics Branch, NASA’s Kennedy Space Center Image Credit: NASA/Cory Huston Interviewer: NASA/Thalia Patrinos Check out some of our other Faces of NASA. View the full article
  16. Although surrounded by the big and bold missions of human spaceflight, Margaret Kennedy, an aerospace systems engineer on the Human Health and Performance Contract, still appreciates the little things. Ask about her favorite NASA experience to date and she will tell you it is getting to show her badge to the gate guards at Houston’s Johnson Space Center every day. “Knowing I get to be a part of things that can change the world – that I’m helping to make it possible for astronauts to do their job safely, which in turn supports life on Earth – is very rewarding,” she said. Margaret Kennedy poses with Johnson Space Center’s inflatable mascot, Cosmo, at Comicpalooza 2024 in Houston, Texas. Image courtesy of Margaret Kennedy Kennedy joined the Johnson team as a contractor with Aegis Aerospace in October 2019. Since then, she has spent most of her time as a systems engineer for the Human Research Program’s Program Integration and Strategic Planning group. That role required her to collect technical information for various projects and to ensure systems were in place to correctly track and manage program documents and agreements. This spring, Kennedy transitioned to a new role in which she provides systems engineering for flight hardware supporting Gateway and exploration missions to the Moon and Mars. She started engaging with Johnson’s Employee Resource Groups (ERGs) shortly before the COVID-19 pandemic and jumped at the chance to get more involved once employees came back onsite. “A few people have been surprised when I tell them I’m really an introvert, not an extrovert, but I had to get out of my shell or I’d still be stuck in my apartment,” she said. “The ERGs were a way for me get out of my space and have allowed me to grow.” Kennedy is thankful the Johnson Parenting ERG started allowing contractors to serve as secretaries because that led to similar opportunities with other ERGs. She served as the membership secretary for both Emerge and Out & Allied ERG (OAERG) in 2023 and is currently OAERG’s executive secretary. “I help keep our chair and co-chair up to date,” she said. “I have my finger on everything that’s happening in the ERG.” Filling these roles gives Kennedy numerous opportunities to support diversity, equity, and inclusion at Johnson, the most recent of which was her participation on a panel during the center’s Diversity, Equity, Inclusion, and Accessibility Day. Margaret Kennedy (left) participates in a panel discussion during Johnson Space Center’s 2024 Diversity, Equity, Inclusion, and Accessibility Day with Kent Kalogera, Out & Allied ERG chair, Livette Santiago Cardona, Greening and Restoring Our World ERG chair, Andrea Browne, ******** ********* ERG chair, and Anika Isaac, Employee Assistance Program counselor.NASA/Robert Markowitz “The main advice I’d give to others wanting to get involved is find your people and don’t be afraid to take a risk,” she said. “Many of us deal with risk every day in our work so find a way to buy down risk by finding allies and a support system. Even if you only get a hair’s width outside your zone of comfort, it makes a difference.” She also said that simply participating in ERG meetings and events – whether in person or virtually – is another great way to get involved. “The ERGs can’t do what we do without you,” she said. “We do it because it’s important to us and to others, but we sometimes struggle to know what people want. We need your thoughts and your ideas because it helps us provide programming and inform the center about what is happening.” Being a part of OAERG in particular has helped Kennedy personally and professionally. “It has provided me with a space to be my authentic self and bring that person to both the world and work,” she said. “In the long line of LGBTQI+ letter soup, I end up in the + on the end more times than not. Out & Allied has given me a way to not only embrace my identity but also help spread awareness about it.” Professionally, the ERG has helped her network with a range of people, including upper and middle management, and strengthen her communication, problem solving, and leadership skills. Margaret Kennedy (center) volunteering at a Hatch Youth event in Houston, Texas, with Kent Kalogera, Out & Allied ERG chair, and Chasity Williams, the group’s former chair. Image courtesy of Margaret Kennedy Kennedy acknowledged that change can take time, noting that while Johnson’s safety-oriented culture is a strength, it can sometimes slow the pace of initiatives that may not be considered mission critical, as can staffing shortages in some areas. “Things like accessible walkways and gender-neutral bathrooms are still important,” she said, adding that leadership is working on it. Kennedy encourages everyone at Johnson to check in with their teammates and have “water cooler moments” with their colleagues as a way of promoting inclusivity. “Be patient and willing to give everyone some grace,” she said. “We can get so focused on the mission and what we need that we sometimes forget there are things happening in other people’s lives that can affect their work.” View the full article
  17. 2 min read Hubble Observes a Cosmic Fossil This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. ESA/Hubble & NASA, F. Niederhofer, L. Girardi This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars. Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis. NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 ******** behind as an ancient witness to the long-past merger. Text Credit: ********* Space Agency (ESA) Download this image Explore More Hubble Space Telescope Hubble’s Star Clusters Galaxy Details and Mergers Tracing the Growth of Galaxies Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD *****@*****.tld Share Details Last Updated Jun 14, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Stars The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories Dark Matter & Dark Energy View the full article
  18. Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 3 min read Sols 4214–4215: The Best ***** Plans… MAHLI image of “Mammoth Lakes,” which we had hoped would become our 41st drill ***** after today’s plan. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday, June 12, 2024 Planning today was defined by the decision about whether or not to drill at “Mammoth Lakes,” the potential drill target that we selected on Monday. This decision is made based on the answer to two questions. First, does this location meet our science objectives? On Monday, we undertook some exploratory contact science (primarily with APXS) to answer this question by determining the likely elemental composition of Mammoth Lakes. Second, is it safe to drill here? Monday’s plan also included a “preload test” to determine the safety of drilling by using the arm to place some pressure on Mammoth Lakes. We do these activities to measure the forces we expect on the arm while drilling and to see if the rock is stable enough to drill into. Although the APXS data indicated that this location meets our science objectives, the preload test was unsuccessful. Consequently, we had to pull the drill activities from the plan. The drill activities had been scheduled to consume the entire first sol of this two sol plan. Unfortunately, the assessment of the preload data came too late to properly pivot from a drilling sol, so we were unable to plan any observations to replace the pulled drill activities. This means that Curiosity gets to take an unplanned vacation with just REMS and RAD observations on the first sol. The second sol looks more like a typical plan, though we had to pull a number of drill-related activities here as well, so it’s a bit emptier than usual. We begin with a Mastcam tau observation looking at the amount of dust in the atmosphere, then move on to a set of Mastcam and Navcam photometry images. These photometry observations take several images of the ground near the rover at different times of day to help us understand how sunlight scatters off of the rocks around us. We take a quick break from science to let the rover communicate with Earth through the Mars Relay Network, then get right back to work with ChemCam. LIBS will be used on the target “Golden Trout Lake,” then we’ll get an RMI mosaic of an area about 15 metres away from the rover. Once ChemCam is done, we’ll have our second set of Mastcam and Navcam photometry observations to complement those taken earlier in the sol. We’ll then take Mastcam images of the Golden Trout Lake LIBS target, one of ChemCam’s AEGIS targets, and some light-toned rocks at “Camp Four.” Mastcam will also be monitoring “Walker Lake,” a nearby patch of sand, to see how the wind is moving the sand around. Today’s plan wraps up with a collection of environmental science activities, including a dust ****** survey, suprahorizon movie, and a line-of-sight mosaic of the north crater rim, as well as our usual suite of REMS, DAN, and RAD observations. Despite the challenges of today, we’re not giving up just yet. This isn’t our first ******* preload test, so the team is now looking for somewhere else in this area to drill. Hopefully we won’t have the same difficulties as when we were trying to drill at the Marker Band, but nobody ever said that drilling a ***** in a rock from over 270 million kilometres away was easy! Written by Conor Hayes, Graduate Student at York University Share Details Last Updated Jun 13, 2024 Related Terms Blogs Explore More 2 min read Sols 4212-4214: Gearing up to Drill! Article 1 day ago 2 min read Bright Rocks and “Bright Angel” Article 3 days ago 4 min read Sols 4209-4211: Just Out of Reach Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
  19. 2 min read Voyager 1 Returning Science Data From All Four Instruments An artist’s concept of the Voyager spacecraft. NASA/JPL-Caltech The spacecraft has resumed gathering information about interstellar space. NASA’s Voyager 1 spacecraft is conducting normal science operations for the first time following a technical issue that arose in November 2023. The team partially resolved the issue in April when they prompted the spacecraft to begin returning engineering data, which includes information about the health and status of the spacecraft. On May 19, the mission team ********* the second step of that repair process and beamed a command to the spacecraft to begin returning science data. Two of the four science instruments returned to their normal operating modes immediately. Two other instruments required some additional work, but now, all four are returning usable science data. The four instruments study plasma waves, magnetic fields, and particles. Voyager 1 and Voyager 2 are the only spacecraft to directly sample interstellar space, which is the region outside the heliosphere — the protective bubble of magnetic fields and solar wind created by the Sun. While Voyager 1 is back to conducting science, additional minor work is needed to clean up the effects of the issue. Among other tasks, engineers will resynchronize timekeeping software in the spacecraft’s three onboard computers so they can ******** commands at the right time. The team will also perform maintenance on the digital tape recorder, which records some data for the plasma wave instrument that is sent to Earth twice per year. (Most of the Voyagers’ science data is sent directly to Earth and not recorded.) Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth, and Voyager 2 is more than 12 billion miles (20 billion kilometers) from the planet. The probes will mark 47 years of operations later this year. They are NASA’s longest-running and most-distant spacecraft. Both spacecraft flew past Jupiter and Saturn, while Voyager 2 also flew past Uranus and Neptune. News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e*****@*****.tld Share Details Last Updated Jun 13, 2024 Related Terms Heliophysics Jet Propulsion Laboratory Voyager 1 Explore More 4 min read NASA Announces New System to Aid Disaster Response Article 4 hours ago 2 min read Aurorasaurus Roars During Historic Solar Storm The largest geomagnetic storm in 21 years lit up the sky last weekend, and NASA’s volunteers were ready.… Article 3 weeks ago 5 min read How NASA Tracked the Most Intense Solar Storm in Decades Article 4 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  20. 17 Min Read The Next Full Moon is the Strawberry Moon A perigee full moon, or supermoon, is seen next to the Empire State Building, Sunday, Sept. 27, 2015 in New York City. Credits: NASA/Joel Kowsky The Next Full Moon is the Strawberry Moon; the Flower, Hot, Hoe, or Planting Moon; the Mead or Honey Moon; the Rose Moon; Vat Purnima; Poson Poya; and the LRO Moon. The next full Moon will be Friday evening, June 21, 2024, appearing opposite the Sun (in Earth-based longitude) at 9:08 PM EDT. This will be Saturday from Greenland and Cape Verde time eastward across Eurasia, *******, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars will show this full Moon on Saturday, June 22, the date in Coordinated Universal Time (UTC). The Moon will appear full for about three days around this time, from Thursday evening through Sunday morning. In the 1930s the Maine Farmer’s Almanac began publishing “Indian” names for full Moons and these names are now widely known and used. According to this Almanac, as the full Moon in June this is the Strawberry Moon, a name that comes from the relatively short season for harvesting strawberries in the north-eastern ******* States. Other seasonal names that I have found in various sources (sometimes with conflicting information about whether they are of ********* or Native ********* origin) are the Flower Moon, Hot Moon, Hoe Moon, and Planting Moon. An old ********* name for this full Moon is the Mead or Honey Moon. Mead is a drink created by fermenting honey mixed with water and sometimes fruits, spices, grains, or hops. In some countries Mead is also called Honey Wine (though in others Honey Wine is made differently). Some writings suggest the time around the end of June was when honey was ready for harvesting, which made this the “sweetest” Moon. The word “honeymoon” traces back to at least the 1500s in Europe. The tradition of calling the first month of marriage the “honeymoon” may be tied to this full Moon because of the custom of marrying in June or because the “Honey Moon” is the “sweetest” Moon of the year. There doesn’t appear to be enough evidence to support a 19th century theory that the word entered English from the custom of gifting newlyweds mead for their first month of marriage. Another ********* name for this full Moon is the Rose Moon. Some sources indicate “Rose Moon” comes from the roses that bloom this time of year. Others indicate that the name comes from the ****** of the full Moon. The orbit of the Moon around the Earth is in almost the same plane as the orbit of the Earth around the Sun (only about 5 degrees off). On the summer solstice the Sun appears highest in the sky for the year. Full Moons are opposite the Sun, so a full Moon near the summer solstice will be low in the sky. Particularly for Europe’s higher latitudes, when the full Moon is low it shines through more atmosphere, making it more likely to have a reddish ****** (for the same reasons that sunrises and sunsets are red). For the Washington, DC area, the full Moon on the night from the evening of June 21 to the morning of June 22 will have the lowest full Moon of the year, reaching only 21.9 degrees above the southern horizon at 1:20 AM EDT. For Hindus this is Vat Purnima. During the 3 days of this full Moon married women will show their love for their husbands by tying a ceremonial thread around a banyan tree. The celebration is based on the legend of Savitri and Satyavan. For Buddhists this full Moon is Poson Poya. The Poson holiday in Sri Lanka celebrates the introduction of Buddhism in 236 BCE. Another tribe has also given a name to this full Moon. This tribe is now scattered but mostly lived in the mid-Atlantic region of the ******* States. This tribe’s language is primarily English, but with a ******** smattering of acronyms, arcane scientific and engineering terms, and Hawaiian phrases (cheerfully contributed by the former Deputy Project Manager). Comprised of people from all backgrounds, many of whom have gone on to join other tribes, this tribe was devoted to the study of the Moon. This tribe calls June’s full Moon the LRO Moon, in honor of the spacecraft they launched towards the Moon 15 years ago, on June 18, 2009. NASA’s Lunar Reconnaissance Orbiter is still orbiting the Moon providing insights about our nearest celestial neighbor, some of which help us understand our own planet. See [Hidden Content] for more information. Many lunar and lunisolar calendars start the months on or just after the new Moon and the full Moon is near the middle of the month. This full Moon is near the middle of the fifth month of the ******** year of the Dragon, Sivan in the Hebrew calendar, and Dhu al-Hijjah, the final month of the Islamic year and one of the four sacred months during which fighting is forbidden. As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. If you’re not allergic, enjoy the strawberries, flowers, and honey during this “sweetest” month of the year, and take note of how low in the sky this full Moon will be. As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, DC): As summer begins the daily periods of sunlight start to gradually shorten, having been at their longest on the summer solstice on the day before this full Moon. On Friday, June 21, 2024 (the day of the full Moon), morning twilight will begin at 4:30 AM, sunrise will be at 5:43 AM, solar noon at 1:10 PM when the Sun will reach its maximum altitude of 74.6 degrees, sunset will be at 8:37 PM, and evening twilight will end at 9:49 PM. The ******* of daylight will be 1.2 seconds shorter than on the summer solstice the previous day. The solar days (as measured, for example, from solar noon to solar noon on a sundial) are longer than 24 hours near the solstices, so the earliest sunrises of the year occur before the summer solstice and the latest sunsets occur after the solstice. For the Washington, DC area and similar latitudes at least (I’ve not checked for other latitudes), Thursday, June 27, will have the latest sunset of the year, with sunset at 8:37:30 PM EDT. By Sunday, July 21, (the day of the full Moon after next), morning twilight will begin at 4:52 AM, sunrise will be at 6:00 AM, solar noon at 1:15 PM when the Sun will reach its maximum altitude of 71.4 degrees, sunset will be at 8:28 PM, and evening twilight will end at 9:37 PM. The comet 13P/Olbers is expected to peak at magnitude 7.5 in early July, too dim to see with the ****** eye. The two meteor showers expected to peak this lunar cycle will be difficult to see. The full Moon will interfere with the peak of the June Bootids (170 JBO) on June 27. The July Pegasids (175 JPE), peaking on July 10, is only expected to show 3 meteors per hour (under ideal conditions). Evening Sky Highlights: On the evening of Friday, June 21, 2024 (the evening of the day of the full Moon), as twilight ends (at 9:49 PM EDT), the rising Moon will be 7 degrees above the southeastern horizon. The bright planets Venus and Mercury will be below the horizon, with Venus setting 21 minutes and Mercury setting 43 minutes after sunset. Mercury may be visible from about 30 minutes after sunset until it sets 13 minutes later. The bright object appearing closest to overhead will be the star Arcturus at 69 degrees above the south-southwestern horizon. Arcturus is the brightest star in the constellation Boötes the herdsman or plowman. It is the 4th brightest star in our night sky and is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. As this lunar cycle progresses the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). June 30 will be the first evening that the bright planet Mercury will be above the west-northwestern horizon as evening twilight ends and the first evening that the bright planet Venus will be above the horizon 30 minutes after sunset (an approximation of when Venus will start emerging from the glow of dusk. Mercury will shift to the left low along the horizon, reaching its highest above the horizon (just 2 degrees as twilight ends) on July 13. The waxing Moon will pass by Regulus on July 8 and 9, Spica on July 13, and Antares on July 17. By the evening of Sunday, July 21 (the evening of the day of the full Moon after next), as twilight ends (at 9:37 PM EDT), the rising Moon will be 3 degrees above the east-southeastern horizon. The bright planet Mercury will be 1 degree above the west-northwestern horizon and 6 minutes away from setting. The planet Venus will set 22 minutes before twilight ends, but will be bright enough to see in the glow of dusk low on the west-northwestern horizon before it sets. The bright object appearing closest to overhead will be Vega, the brightest star in the constellation Lyra the lyre, at 65 degrees above the eastern horizon. Vega is one of the three bright stars in the Summer Triangle along with Deneb, and Altair. Vega is the 5th brightest star in our night sky, about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun. Morning Sky Highlights: On the morning of Friday, June 21, 2024 (the morning of the day of the full Moon), as twilight begins (at 4:31 AM EDT), the setting full Moon will be 2 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at just 3 degrees above the east-northeastern horizon. The planet Mars will be 19 degrees above the eastern horizon and the planet Saturn (almost as bright as Mars) will be 37 degrees above the southeastern horizon. The bright object appearing closest to overhead will be the star Deneb at 80 degrees above the northwestern horizon. Deneb is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. Deneb is one of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us. As this lunar cycle progresses, Jupiter, Saturn, and the background of stars will appear to shift westward each evening, with Mars shifting more slowly and to the left. The waning Moon will pass by Saturn on June 27, on Mars on July 1, the Pleiades star cluster on July 2, and Jupiter on July 3. By the morning of Sunday, July 21 (the morning of the day of the full Moon after next), as twilight begins (at 4:52 AM EDT), the setting full Moon will be 7 degrees above the southwestern horizon. The brightest planet in the sky will be Jupiter at 25 degrees above the eastern horizon. Mars will be 33 degrees above the eastern horizon and Saturn 45 degrees above the southern horizon. The bright object appearing closest to overhead still will be the star Deneb at 56 degrees above the west-northwestern horizon. Detailed Daily Guide: Here for your reference is a day-by-day listing of celestial events between now and the full Moon after next. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). Sunday morning, June 16, 2024, will be the first morning that the bright planet Jupiter will be above the east-northeastern horizon as morning twilight begins (at 4:30 AM EDT). Sunday evening into early Monday morning, June 16 to 17, 2024, the bright star Spica will appear near the waxing gibbous Moon. As evening twilight ends (at 9:48 PM EDT) Spica will be 3.5 degrees to the right of the Moon. By the time Spica sets on the west-southwestern horizon 4.5 hours later (at 2:16 AM) it will be 5 degrees to the lower right of the Moon. Around the northern part of the boundary between Europe and Asia the Moon will actually block Spica from view. Wednesday evening, June 19, 2024, will be the first evening the bright planet Mercury will be above the west-northwestern horizon 30 minutes after sunset, an approximation of when it will begin emerging from the glow of dusk. Each evening after this Mercury should become easier to spot and by the end of June will be above the horizon as evening twilight ends. Wednesday evening into Thursday morning, June 19 to 20, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:49 PM EDT) Antares will be 5 degrees to the lower left of the Moon. The Moon will reach its highest in the sky 1.5 hours later (at 11:25 PM EDT) with Antares 4 degrees to the left of the Moon. The Moon will set first on the southwestern horizon (at 4:03 AM) with Antares 2 degrees to the upper left. Thursday afternoon, June 20, 2024, at 4:51 PM EDT will be the summer solstice, the astronomical end of spring and start of summer. This will be the day with the longest ******* of sunlight (14 hours, 53 minutes, 42.5 seconds) but will not be the day with the earliest sunrise or the latest sunset. As mentioned above, the full Moon will be Friday evening, June 21, 2024, at 9:08 PM EDT. This will be on Saturday from Greenland and Cape Verde time eastward across Eurasia, *******, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars will show this full Moon on Saturday, June 22. This will be the lowest full Moon of the year (reaching only 21.9 degrees above the southern horizon Saturday morning at 1:20 AM). The Moon will appear full for about three days around this time, from Thursday evening through Sunday morning. Thursday morning, June 27, 2024, the planet Saturn will appear near the waning gibbous Moon. As Saturn rises on the eastern horizon (at 12:26 AM EDT) it will be 6 degrees to the lower left of the Moon. By the time morning twilight begins (at 4:33 AM) Saturn will be 4 degrees to the upper left of the Moon. Thursday morning June 27, 2024, the Moon will be at perigee, its closest to the Earth for this orbit. For the Washington, DC area and similar latitudes, at least, Thursday, June 27, 2024, will have the latest sunset of the year (with sunset at 8:37:30 PM EDT). Friday afternoon, June 28, 2024, the waning Moon will appear half-full as it reaches its last quarter at 5:53 PM EDT (when the Moon will be below the horizon). Sunday evening, June 30, 2024, will be the first evening that the bright planet Mercury will be above the west-northwestern horizon as evening twilight ends (at 9:49 PM EDT). It will also be the first evening that the bright planet Venus will be above the west-northwestern horizon (at 9:07 PM) 30 minutes after sunset, an approximation of when Venus will start emerging from the glow of dusk. Monday morning, July 1, 2024, the planet Mars will appear 5 degrees to the lower left of the waning crescent Moon. Mars will rise last on the east-northeastern horizon (at 2:29 AM EDT) and morning twilight will begin a little more than 2 hours later (at 4:35 AM). Tuesday morning, July 2, 2024, the Pleiades star cluster will appear 5 degrees to the lower left of the waning crescent Moon. The Pleiades will rise last on the east-northeastern horizon (around 2:46 AM EDT) and morning twilight will begin a little less than 2 hours later (at 4:35 AM). Friday afternoon, July 5, 2024, the Earth will be at aphelion, its farthest away from the Sun in its orbit, 3.4% farther away than it was at perihelion in early January. Since the intensity of light drops off as the square of the distance, the sunlight reaching the Earth at aphelion is about 6.5% less bright than sunlight reaching the Earth at perihelion. Friday evening, July 5, 2024, at 6:57 PM EDT, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth. The day of or the day after the New Moon marks the start of the new month for most lunisolar calendars. Saturday, July 6 will be the start of the sixth month of the ******** year of the Dragon. Sundown on July 6 will mark the start of Tammuz in the Hebrew calendar. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many ******* communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Saturday, July 6, will probably mark Al-Hijra, the Islamic New Year and the beginning of the month of Muharram, although Muharram is one of four months for which the calendar dates may be adjusted by the religious authorities of Saudi Arabia after actual sightings of the lunar crescent. Al-Hijra is a public holiday in many ******* countries. Customs vary, but most include observing the day quietly and practicing gratitude. Muharram is one of the four sacred months during which warfare is forbidden. Sunday evening, July 7, 2024, the planet Mercury will appear 3 degrees below the thin, waxing crescent Moon, with the Beehive cluster (visible with binoculars) 1.5 degrees to the lower right of Mercury. As evening twilight ends (at 9:47 PM EDT) the Moon will be 4 degrees above the west-northwestern horizon, with Mercury a little more than 1 degree and the Beehive cluster a little less than 1 degree above the horizon. The Beehive cluster will set first 7 minutes later (at 9:54 PM), followed by Mercury 4 minutes after that (at 9:58 PM) and the Moon 19 minutes after Mercury set (at 10:17 PM). Friday morning, July 12, 2024, at 4:12 AM EDT (when we can’t see it), the Moon will be at apogee, its farthest from the Earth for this orbit. Saturday evening, July 13, 2024, the Moon will appear half-full as it reaches its first quarter at 6:49 PM EDT. Saturday evening, July 13, 2024, will be when the planet Mercury will reach its highest (2 degrees) above the west-northwestern horizon as evening twilight ends (at 9:43 PM EDT). Saturday night, July 13, 2024, the bright star Spica will appear near the half-full Moon, so near that for part of the night the Moon will block Spica from view for much of North America (see [Hidden Content] for a map and information on the locations that will see this occultation). For the location of NASA Headquarters in Washington, DC (angles and times will be different for other locations), as evening twilight ends (at 9:43 PM EDT), Spica will be 1 degree to the left of the Moon. If you are in a location that will see this occultation, you should be able to see Spica vanish behind the dark half of the Moon (at 11:26 PM for the DC area). For the Washington, DC area the Moon will set (at 12:32 AM) before Spica reemerges. For locations farther west, the brightness of the lit half of the Moon will make it hard to see when Spica emerges. Wednesday night into early Thursday morning, July 17 to 18, 2024, the bright star Antares will appear near the waxing gibbous Moon. As evening twilight ends (at 9:40 PM EDT) Antares will be 3 degrees to the upper right of the Moon. The Moon will reach its highest in the sky 27 minutes later (at 10:07 PM). As Antares sets (at 2:21 AM) it will be 5 degrees to the lower right of the Moon. For much of the southern part of ******* the Moon will pass in front of Antares earlier on Wednesday. See [Hidden Content] for a map and information on the locations that will see this occultation. The full Moon after next will be Sunday morning, July 21, 2024, at 6:17 AM EDT. This will be late Saturday night for the International Date Line West and the ********* Samoa and Midway time zones and early Monday morning for Line Islands Time. The Moon will appear full for about three days around this time, from Friday evening through Monday morning, making this a full Moon weekend. Keep Exploring Discover More Topics From NASA Moon Moon Facts Moon Phases Moon Stories View the full article
  21. In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande do Sul, leaving thousands of people without food, water, or electricity. In the following days, NASA teams provided data and imagery to help on-the-ground responders understand the disaster’s impacts and deploy aid. Building on this response and similar successes, on June 13, NASA announced a new system to support disaster response organizations in the U.S. and around the world. Members of the Los Angeles County ***** Department’s Urban Search and Rescue team in Adiyaman, Turkey (Türkiye), conducting rescue efforts in the wake of powerful earthquakes that struck the region in February 2023. NASA provided maps and data to support USAID and other regional partners during these earthquakes. USAID “When disasters strike, NASA is here to help — at home and around the world,” said NASA Administrator Bill Nelson. “As challenges from extreme weather grow, so too does the value of NASA’s efforts to provide critical Earth observing data to disaster-response teams on the frontlines. We’ve done so for years. Now, through this system, we expand our capability to help power our U.S. government partners, international partners, and relief organizations across the globe as they take on disasters — and save lives.” The team behind NASA’s Disaster Response Coordination System gathers science, technology, data, and expertise from across the agency and provides it to emergency managers. The new system will be able to provide up-to-date information on fires, earthquakes, landslides, floods, tornadoes, hurricanes, and other extreme events. NASA Administrator Bill Nelson delivers remarks during an event launching a new Disaster Response Coordination System that will provide communities and organizations around the world with access to science and data to aid disaster response, Thursday, June 13, 2024, at the NASA Headquarters Mary W. Jackson Building in Washington. NASA/Bill Ingalls “The risk from climate-related hazards is increasing, making more people vulnerable to extreme events,” said Karen St. Germain, director of NASA’s Earth Science Division. “This is particularly true for the 10% of the global population living in low-lying coastal regions who are vulnerable to storm surges, waves and tsunamis, and rapid erosion. NASA’s disaster system is designed to deliver trusted, actionable Earth science in ways and means that can be used immediately, to enable effective response to disasters and ultimately help save lives.” Agencies working with NASA include the Federal Emergency Management Agency, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey, and the U.S. Agency for International Development — as well as international organizations such as World Central Kitchen. “With this deliberate and structured approach, we can be even more effective in putting Earth science into action,” said Josh Barnes, at NASA’s Langley Research Center in Hampton, Virginia. Barnes manages the Disaster Response Coordination System. NASA Disasters Team Aiding Brazil When the floods and landslides ravaged parts of Brazil in May, officials from the U.S. Southern Command — working with the U.S. Space Force and Air Force, and regional partners — reached out to NASA for Earth-observing data. Image Before/After NASA’s response included maps of potential power outages from the ****** Marble project at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Disaster response coordinators at NASA Goddard also reviewed high-resolution optical data — from the Commercial Smallsat Data Acquisition Program — to map more than 4,000 landslides. Response coordinators from NASA’s Jet Propulsion Laboratory and the California Institute of Technology, both in Southern California, produced flood extent maps using data from the NASA and U.S. Geological Survey Landsat mission and from ESA’s (the ********* Space Agency) Copernicus Sentinel-2 satellite. Response coordinators at NASA’s Johnson Space Center in Houston also provided photographs of the flooding taken by astronauts aboard the International Space Station. Building on Previous Work The Brazil event is just one of hundreds of responses NASA has supported over the past decade. The team aids decision-making for a wide range of natural hazards and disasters, from hurricanes and earthquakes to tsunamis and oil spills. “NASA’s Disasters Program advances science for disaster resilience and develops accessible resources to help communities around the world make informed decisions for disaster planning,” said Shanna McClain, manager of NASA’s Disasters Program. “The new Disaster Response Coordination System significantly expands our efforts to bring the power of Earth science when responding to disasters.” For more information visit: [Hidden Content] By Jacob Reed NASA’s Goddard Space Flight Center, Greenbelt, Md. Explore More 5 min read NASA, Pacific Disaster Center Increase Landslide Hazard Awareness Communities worldwide now have access to a powerful tool to increase their awareness of landslide… Article 8 months ago 4 min read NASA Researchers Detect Tsunamis by Their Rumble in the Atmosphere New hazard-monitoring technology uses GPS signals to go wave-hunting in the Pacific Ring of *****.… Article 1 year ago 4 min read NASA Data Helps Track Veterans’ Exposure to Air Pollution Researchers with the U.S. Department of Veterans Affairs are using NASA Earth observations of smoke… Article 1 year ago Share Details Last Updated Jun 13, 2024 Editor Rob Garner Related Terms Ames Research Center Earth Extreme Weather Events Goddard Space Flight Center Jet Propulsion Laboratory Johnson Space Center Langley Research Center Marshall Space Flight Center Natural Disasters View the full article
  22. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NSTGRO Homepage Claire Lessler University of Chicago Precision Spectroscopic Calibration and Next-Generation Millimeter-Wave Spectrometers Miron Liu University of Michigan Development of a Magnetically Shielded Hall Thruster without Pole Erosion Ashley Maldonado Otero University of Southern California Optimizing heterogeneous nanostructured materials for space applications Camille McDonnell University of Maryland, College Park Low-SWaP Nanophotonic Quantum Enhanced Sensors with Highly Squeezed Light Daniel Miliate University of California, Merced Dry Film Lubricants for Heaterless Actuators Andrew Morell University of Colorado, Boulder Rapid Modular Simulation Methods for Capture and Post-Capture Spacecraft Dynamics Daniel Morton Stanford University Combining Optimal and Learning-Based Control Methods for the Manipulation of Spaceborne Objects Abhay Negi University of Southern California Autonomous Fault Detection, Recovery, and Avoidance during Robotic In-Space Assembly Devin Nielsen Utah State University Multi-scale Analysis of Pyrolytic Graphite Sheet Laminates for Space Radiator Applications Using NASMAT Jennifer Nolan Georgia Institute of Technology Application of Neural Radiance Fields for Autonomous Spacecraft Navigation and Planetary Characterization Henry Noyes Northeastern University Autonomous Navigation and Multi-Modal Path Planning in Lunar Craters Using a Modular Snake-like ****** Lorin Nugent Purdue University Spacecraft Rendezvous Techniques for Multi-Body Gravitational Environments Jake Olkin Massachusetts Institute of Technology Long-Duration, Risk-Aware, Goal-Directed Adaptive Sampling for Autonomous Vehicle Exploration Nathaniel Osikowicz Penn State University Tendon-actuated Structural Modules for Enhanced Segmented Aperture Reflectors Rebecca Palmer Georgia Institute of Technology Debris to Infrastructure: Salvage Characterization and Recovered Metals Processing in Lunar Gravity Austin Patridge University of Texas at San Antonio Apollo Regolith Thermally Constrained Landing Pad Bricks (ARTC Bricks) Cutler Phillippe University of Illinois at Urbana-Champaign Imaging and Analysis Framework for Parachute Micro-structural Basis Minyoung Ra Purdue University Robust Optimal Control of Spacecraft Translational-Rotational Coupled Motion under Uncertainty Clayton Ramsey William Marsh Rice University Low-Power Real-Time Planning for Robots in Uncertain Environments Tomaz Remec University of Colorado, Boulder Experimental Characterization of Magnetohydrodynamic Effects in Planetary Entry Plasmas Kate Rhoads University of Kentucky Investigation of Spallation in Low Permeability TPS Materials Anton Samoylov University of Arizona Multifunctional Nanofiber Reinforcement of Perovskite Solar Cells for Resilience in Space Tressa Smalley University of California, Davis Technology Development of Lemna japonica (Duckweed) for Human Therapeutic Production in Space Amanda Smith Worcester Polytechnic Institute Development of a Novel Process for Refractory Metal Powder Production Nicholas Stegmeier University of Texas at San Antonio Experimental Characterization of Jet Interaction Effects for EDL Vehicle Configurations Austin Stover University of Chicago A Densely Sampled Integral Field Spectrometer to Enable Space-Based Millimeter-Wave Line Intensity Mapping Surveys Ashley Tirado Embry-Riddle Aeronautical University Designing Passive Doped-YSZ Ceramic Coatings For Impact and Wear Resistance Against Lunar Dust Lydia Ellen Tonani-Penha Worcester Polytechnic Institute Project Tethys: Extracting Water from the Martian Environment Margaret Wang Stanford University Adaptive World Models for Space Robotics: Implicit Representations Grounded in Semantics and Physics Ian Wells Washington State University Understanding Liquid Hydrogen Critical Heat Flux via Optical Imaging Ray Westenberg Georgia Institute of Technology Engineering Cyanobacteria for Chemical Bioproduction on Mars Karol Woloszyn New York University Functionalization of 3D DNA Nanomaterials and Nanoarchitectures for Space-Based Technology Amber Young University of California, Berkeley Increasing scientific access and technology reliability through multi-modal surface and subsurface legged mobility Grace Zoppi University of Michigan Development of an Electrodeless Magnetoplasmadynamic Thruster Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate Space Technology Research Grants NASA Space Technology Graduate Research Opportunities (NSTGRO) Technology Share Details Last Updated Jun 13, 2024 EditorLoura Hall Related TermsSpace Technology Research GrantsNASA Space Technology Graduate Research Opportunities (NSTGRO) View the full article
  23. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Managed by NASA’s Jet Propulsion Laboratory through launch, Webb’s Mid-Infrared Instrument also revealed jets of gas flowing into space from the twin stars. Scientists recently got a big surprise from NASA’s James Webb Space Telescope when they turned the observatory toward a group of young stars called WL 20. The region has been studied since the 1970s with at least five telescopes, but it took Webb’s unprecedented resolution and specialized instruments to reveal that what researchers long thought was one of the stars, WL 20S, is actually a pair that formed about 2 million to 4 million years ago. The discovery was made using Webb’s Mid-Infrared Instrument (MIRI) and was presented at the 244th meeting of the ********* Astronomical Society on June 12. MIRI also found that the twins have matching jets of gas streaming into space from their north and south poles. “Our jaws dropped,” said astronomer Mary Barsony, lead author of a new paper describing the results. “After studying this source for decades, we thought we knew it pretty well. But without MIRI we would not have known this was two stars or that these jets existed. That’s really astonishing. It’s like having brand new eyes.” This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas ****** away from the stars’ north and south poles. The team got another surprise when additional observations by the Atacama Large Millimeter/submillimeter Array (ALMA), a group of more than 60 radio antennas in Chile, revealed that disks of dust and gas encircle both stars. Based on the stars’ age, it’s possible that planets are forming in those disks. The combined results indicate that the twin stars are nearing the end of this early ******* of their lives, which means scientists will have the opportunity to learn more about how the stars transition from youth into adulthood. “The power of these two telescopes together is really incredible,” said Mike Ressler, project scientist for MIRI at NASA’s Jet Propulsion Laboratory and co-author of the new study. “If we hadn’t seen that these were two stars, the ALMA results might have just looked like a single disk with a gap in the middle. Instead, we have new data about two stars that are clearly at a critical point in their lives, when the processes that formed them are petering out.” This image of the WL 20 star group combines data from the Atacama Large Millimeter/submillimeter Array and the Mid-Infrared Instrument on NASA’s Webb telescope. Gas jets emanating from the poles of twin stars appear blue and green; disks of dust and gas surrounding the stars are pink.U.S. NSF; NSF NRAO; ALMA; NASA/JPL-Caltech; B. Saxton Stellar Jets WL 20 resides in a much larger, well-studied star-forming region of the Milky Way galaxy called Rho Ophiuchi, a massive cloud of gas and dust about 400 light-years from Earth. In fact, WL 20 is hidden behind thick clouds of gas and dust that block most of the visible light (wavelengths that the human eye can detect) from the stars there. Webb detects slightly longer wavelengths, called infrared, that can pass through those layers. MIRI detects the longest infrared wavelengths of any instrument on Webb and is thus well equipped for peering into obscured star-forming regions like WL 20. Radio waves can often penetrate dust as well, though they may not reveal the same features as infrared light. The disks of gas and dust surrounding the two stars in WL 20S emit light in a range that astronomers call submillimeter; these, too, penetrate the surrounding gas clouds and were observed by ALMA. These four images show the WL 20 star system as seen by (from left) NASA’s Infrared Telescope Facility at the Mauna Kea Observatory, the Hale 5.0-meter telescope the Palomar Observatory, the Keck II telescope, and the NASA’s Webb telescope and the Atacama Large Millimeter/submillimeter Array. But scientists could easily have interpreted those observations as evidence of a single disk with a gap in it had MIRI not also observed the two stellar jets. The jets of gas are composed of ions, or individual atoms with some electrons stripped away that radiate in mid-infrared wavelengths but not at submillimeter wavelengths. Only an infrared instrument with spatial and spectral resolution like MIRI’s could see them. ALMA can also observe clouds of leftover formation material around young stars. Composed of whole molecules, like carbon monoxide, these clouds of gas and dust radiate light at these longer wavelengths. The absence of those clouds in the ALMA observations shows that the stars are beyond their initial formation phase. “It’s amazing that this region still has so much to teach us about the life cycle of stars,” said Ressler. “I’m thrilled to see what else Webb will reveal.” More About the Mission The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (********* Space Agency) and CSA (********* Space Agency). MIRI was developed through a 50-50 partnership between NASA and ESA. A division of Caltech in Pasadena, California, JPL led the U.S. efforts for MIRI, and a multinational consortium of ********* astronomical institutes contributes for ESA. George Rieke with the University of Arizona is the MIRI science team lead. Gillian Wright is the MIRI ********* principal investigator. The MIRI cryocooler development was led and managed by JPL, in collaboration with Northrop Grumman in Redondo Beach, California, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e*****@*****.tld 2024-085 Share Details Last Updated Jun 13, 2024 Related TermsJames Webb Space Telescope (JWST)AstrophysicsExoplanetsJet Propulsion LaboratoryStars Explore More 5 min read NASA’s Perseverance Fords an Ancient River to Reach Science Target Article 4 hours ago 4 min read Coming in Hot — NASA’s Chandra Checks Habitability of Exoplanets Article 1 day ago 6 min read NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers Article 1 day ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  24. The Virginia Tech team, winners of first place overall in the RASC-AL 2024 competition.NASA Out of 14 finalist teams that encompassed collegiate and university representation from across the globe, the Virginia Polytechnic Institute and State University team with their concept, “Project Draupnir,” in the AI-Powered Self-Replicating Probe theme, took home top prize in NASA’s Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition. The University of Maryland took second place overall for their concept, “SITIS: Subsurface Ice and Terrain In-situ Surveyor,” while South Dakota State University took third place overall with “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation,” both in the Large-Scale Lunar Crater Prospector theme. The first and second place overall winning teams will receive a travel stipend to present their work at the 2024 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July. The University of Maryland team, winners of second place overall in the RASC-AL 2024 competition.NASA In its 23rd year, RASC-AL is one of NASA’s longest running higher education competitions. “It’s an engaging engineering design challenge that fosters collaboration, innovation, and hard work. Finalist teams also enjoy the comradery and networking opportunities at our annual forum in Cocoa Beach, Florida,” said Pat Troutman, program assistant, technical for NASA’s Strategy and Architecture Office. “Each year, the competition grows as more and more students want to contribute to NASA’s mission of improving humanity’s ability to operate on the Moon, Mars and beyond.” The forum is attended by NASA and industry subject matter experts who judge the presentations and offer valuable feedback. New this year, RASC-AL teams based in the ******* States were encouraged to work with universities from countries that have signed The Artemis Accords – a set of principles designed to guide civil space exploration and use in the 21st century. Finalist teams responded to one of four themes, ranging from developing large-scale lunar surface architectures enabling long-term off-world habitation, to designing new systems that leverage in-situ resources for in-space travel and exploration. The South Dakota State team, winners of third place overall in the RASC-AL 2024 competition.NASA Additional 2024 Forum awards include: Best in Theme: AI-Powered Self-Replicating Probes – an Evolutionary Approach: Virginia Polytechnic Institute and State University, “Project Draupnir” Large-Scale Lunar Crater Prospector: University of Maryland, “SITIS: Subsurface Ice and Terrain In-situ Surveyor” Sustained Lunar Evolution: University of Puerto Rico, Mayaguez, “Permanent Outpost Lunar Architecture for Research and Innovative Services (POLARIS)” Long Duration Mars Simulation at the Moon: Massachusetts Institute of Technology (MIT) with École Polytechnique Fédérale de Lausanne (EPFL) and the National Higher French Institute of Aeronautics and Space (ISAE-SUPAERO), “MARTEMIS: Mars Architecture Research using Taguchi Experiments on the Moon with International Solidarity” Other Awards: Best Prototype: South Dakota State University, “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation” RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.  RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.  For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: [Hidden Content]. Facebook logo @NASA@nasalarc @NASA@NASA_Langley Instagram logo @NASA@NASA_Langley Linkedin logo @NASA@company/nasa-langley-research-center Share Details Last Updated Jun 13, 2024 Related TermsLangley Research CenterSpace Technology Mission Directorate Explore More 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge Article 2 hours ago 2 min read Food Safety Program for Space Has Taken Over on Earth System created for Apollo astronaut food has become the global standard for hazard prevention Article 3 days ago 5 min read NASA’s Laser Relay System Sends **** Imagery to, from Space Station Article 7 days ago View the full article
  25. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Credits: Downtown Huntsville Inc. NASA in the Park is coming back to Big Spring Park East in Huntsville, Alabama, on Saturday, June 22, from 10 a.m. to 2 p.m. CDT. The event is free and open to the public. NASA’s Marshall Space Flight Center, its partners, and collaborators will fill the park with space exhibits, music, food vendors, and hands-on activities for all ages. Marshall is teaming up with Downtown Huntsville Inc. for this unique celebration of space and the Rocket City. “NASA in the Park gives us the opportunity to bring our work outside the gates of Redstone Arsenal and thank the community for their continuing support,” Marshall Director Joseph Pelfrey said. “It’s the first time we’ve held the event since 2018, and we look forward to sharing this experience with everyone.” Pelfrey will kick the event off with local leaders on the main stage. NASA speakers will spotlight topics ranging from space habitats to solar sails, and local rock band Five by Five will perform throughout the day. “NASA Marshall is leading the way in this new era of space exploration, for the benefit of all humankind,” Pelfrey said. “We are proud members of the Rocket City community, which has helped us push the boundaries of science, technology, and engineering for nearly 65 years.” To learn more about Marshall, visit: www.nasa.gov/marshall Download NASA in the Park Poster Jun 13, 2024 PDF (4.09 MB) Molly Porter Marshall Space Flight Center 256-424-5158 *****@*****.tld Share Details Last Updated Jun 13, 2024 LocationMarshall Space Flight Center Related TermsMarshall Space Flight Center Explore More 4 min read California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge Article 2 hours ago 25 min read The Marshall Star for June 12, 2024 Article 21 hours ago 4 min read Coming in Hot — NASA’s Chandra Checks Habitability of Exoplanets Article 1 day ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article

Important Information

Privacy Notice: We utilize cookies to optimize your browsing experience and analyze website traffic. By consenting, you acknowledge and agree to our Cookie Policy, ensuring your privacy preferences are respected.